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Abstract We review different aspects of the simulation
of spiking neural networks. We start by reviewing the
different types of simulation strategies and algorithms
that are currently implemented. We next review the
precision of those simulation strategies, in particular in
cases where plasticity depends on the exact timing of
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the spikes. We overview different simulators and sim-
ulation environments presently available (restricted to
those freely available, open source and documented).
For each simulation tool, its advantages and pitfalls are
reviewed, with an aim to allow the reader to identify
which simulator is appropriate for a given task. Finally,
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we provide a series of benchmark simulations of dif-
ferent types of networks of spiking neurons, including
Hodgkin–Huxley type, integrate-and-fire models, in-
teracting with current-based or conductance-based
synapses, using clock-driven or event-driven integra-
tion strategies. The same set of models are imple-
mented on the different simulators, and the codes are
made available. The ultimate goal of this review is to
provide a resource to facilitate identifying the appro-
priate integration strategy and simulation tool to use
for a given modeling problem related to spiking neural
networks.

Keywords Spiking neural networks ·
Simulation tools · Integration strategies ·
Clock-driven · Event-driven

1 Introduction

The growing experimental evidence that spike timing
may be important to explain neural computations has
motivated the use of spiking neuron models, rather
than the traditional rate-based models. At the same
time, a growing number of tools have appeared, al-
lowing the simulation of spiking neural networks. Such
tools offer the user to obtain precise simulations of a
given computational paradigm, as well as publishable
figures in a relatively short amount of time. However,
the range of computational problems related to spiking
neurons is very large. It requires in some cases to use
detailed biophysical representations of the neurons, for
example when intracellular electrophysiological mea-
surements are to be reproduced (e.g., see Destexhe and
Sejnowski 2001). In this case, one uses conductance-
based (COBA) models, such as the Hodgkin and
Huxley (1952) type of models. In other cases, one does
not need to realistically capture the spike generating
mechanisms, and simpler models, such as the integrate-
and-fire (IF) model are sufficient. IF type models are
also very fast to simulate, and are particularly attractive
for large-scale network simulations.

There are two families of algorithms for the simula-
tion of neural networks: synchronous or “clock-driven”
algorithms, in which all neurons are updated simulta-
neously at every tick of a clock, and asynchronous or
“event-driven” algorithms, in which neurons are upda-
ted only when they receive or emit a spike (hybrid strat-
egies also exist). Synchronous algorithms can be easily
coded and apply to any model. Because spike times are
typically bound to a discrete time grid, the precision

of the simulation can be an issue. Asynchronous algo-
rithms have been developed mostly for exact simula-
tion, which is possible for simple models. For very large
networks, the simulation time for both methods scale
as the total number of spike transmissions, but each
strategy has its own assets and disadvantages.

In this paper, we start by providing an overview of
different simulation strategies, and outline to which
extent the temporal precision of spiking events impacts
on neuronal dynamics of single as well as small net-
works of IF neurons with plastic synapses. Next, we
review the currently available simulators or simulation
environments, with an aim to focus only on publically-
available and non-commercial tools to simulate net-
works of spiking neurons. For each type of simulator,
we describe the simulation strategy used, outline the
type of models which are most optimal, as well as
provide concrete examples. The ultimate goal of this
paper is to provide a resource to enable the researcher
to identify which strategy or simulator to use for a given
modeling problem related to spiking neural networks.

2 Simulation strategies

This discussion is restricted to serial algorithms for
brevity. The specific sections of NEST and SPLIT con-
tain additional information on concepts for parallel
computing.

There are two families of algorithms for the simu-
lation of neural networks: synchronous or clock-driven
algorithms, in which all neurons are updated simulta-
neously at every tick of a clock, and asynchronous or
event-driven algorithms, in which neurons are updated
only when they receive or emit a spike. These two
approaches have some common features that we will
first describe by expressing the problem of simulating
neural networks in the formalism of hybrid systems, i.e.,
differential equations with discrete events (spikes). In
this framework some common strategies for efficient
representation and simulation appear.

Since we are going to compare algorithms in terms
of computational efficiency, let us first ask ourselves
the following question: how much time can it possibly
take for a good algorithm to simulate a large network?
Suppose there are N neurons whose average firing
rate is F and average number of synapses is p. If all
spike transmissions are taken into account, then a simu-
lation lasting 1 s (biological time) must process N × p ×
F spike transmissions. The goal of efficient algorithm
design is to reach this minimal number of operations
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(of course, up to a constant multiplicative factor). If
the simulation is not restricted to spike-mediated in-
teractions, e.g. if the model includes gap junctions or
dendro-dendritic interactions, then the optimal num-
ber of operations can be much larger, but in this re-
view we chose not to address the problem of graded
interactions.

2.1 A hybrid system formalism

Mathematically, neurons can be described as hybrid
systems: the state of a neuron evolves continuously
according to some biophysical equations, which are typ-
ically differential equations (deterministic or stochastic,
ordinary or partial differential equations), and spikes
received through the synapses trigger changes in some
of the variables. Thus the dynamics of a neuron can be
described as follows:

dX
dt

= f (X)

X ← gi(X) upon spike from synapse i

where X is a vector describing the state of the neuron.
In theory, taking into account the morphology of the
neuron would lead to partial differential equations;
however, in practice, one usually approximates the
dendritic tree by coupled isopotential compartments,
which also leads to a differential system with discrete
events. Spikes are emitted when some threshold con-
dition is satisfied, for instance Vm ≥ θ for IF models
(where Vm is the membrane potential and would be
the first component of vector X), and/or dVm/dt ≥ θ

for Hodgkin–Huxley (HH) type models. This can be
summarized by saying that a spike is emitted whenever
some condition X ∈ A is satisfied. For IF models, the
membrane potential, which would be the first compo-
nent of X, is reset when a spike is produced. The reset
can be integrated into the hybrid system formalism by
considering for example that outgoing spikes act on X
through an additional (virtual) synapse: X ← g0(X).

With this formalism, it appears clearly that spike
times need not be stored (except of course if transmis-
sion delays are included), even though it would seem
so from more phenomenological formulations. For ex-
ample, consider the following IF model (described for
example in Gütig and Sompolinsky (2006)):

V(t) =
∑

i

ωi

∑

ti

K(t − ti) + Vrest

where V(t) is the membrane potential, Vrest is the
rest potential, ωi is the synaptic weight of synapse i,
ti are the timings of the spikes coming from synapse
i, and K(t − ti) = exp(−(t − ti)/τ) − exp(−(t − ti)/τs) is
the post-synaptic potential (PSP) contributed by each
incoming spike. The model can be restated as a two-
variables differential system with discrete events as
follows:

τ
dV
dt

= Vrest − V + J

τs
dJ
dt

= −J

J ← J + τ − τs

τ
wi upon spike from synapse i

Virtually all PSPs or currents described in the litera-
ture (e.g. α-functions, bi-exponential functions) can be
expressed this way. Several authors have described the
transformation from phenomenological expressions to
the hybrid system formalism for synaptic conductances
and currents (Destexhe et al. 1994a,b; Rotter and
Diesmann 1999; Giugliano 2000), short-term synaptic
depression (Giugliano et al. 1999), and spike-timing-
dependent plasticity (Song et al. 2000). In many cases,
the spike response model (Gerstner and Kistler 2002)
is also the integral expression of a hybrid system. To
derive the differential formulation of a given post-
synaptic current or conductance, one way is to see
the latter as the impulse response of a linear time-
invariant system [which can be seen as a filter (Jahnke
et al. 1998)] and use transformation tools from signal
processing theory such as the Z-transform (Kohn and
Wörgötter 1998) (see also Sanchez-Montanez 2001) or
the Laplace transform (the Z-transform is the equiva-
lent of the Laplace transform in the digital time domain,
i.e., for synchronous algorithms).

2.2 Using linearities for fast synaptic simulation

In general, the number of state variables of a neuron
(length of vector X) scales with the number of synapses,
since each synapse has its own dynamics. This fact
constitutes a major problem for efficient simulation of
neural networks, both in terms of memory consumption
and computation time. However, several authors have
observed that all synaptic variables sharing the same
linear dynamics can be reduced to a single one (Wilson
and Bower 1989; Bernard et al. 1994; Lytton 1996;
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Song et al. 2000). For example, the following set of
differential equations, describing an IF model with n
synapses with exponential conductances:

C
dV
dt

= V0 − V +
∑

i

gi(t)(V − Es)

τs
dg1

dt
= −g1

. . .

τs
dgn

dt
= −gn

gi ← gi + wi upon spike arriving at synapse i

is mathematically equivalent to the following set of two
differential equations:

C
dV
dt

= V0 − V + g(t)(V − Es)

τs
dg
dt

= −g

g ← g + wi upon spike arriving at synapse i

where g is the total synaptic conductance. The same
reduction applies to synapses with higher dimensional
dynamics, as long as it is linear and the spike-triggered
changes (gi ← gi + wi) are additive and do not depend
on the state of the synapse (e.g. the rule gi ← gi + wi ∗
f (gi) would cause a problem). Some models of spike-
timing dependent plasticity (with linear interactions
between pairs of spikes) can also be simulated in this
way (see e.g. Abbott and Nelson 2000). However,
some important biophysical models are not linear and
thus cannot benefit from this optimization, in particular
NMDA-mediated interactions and saturating synapses.

2.3 Synchronous or clock-driven algorithms

In a synchronous or clock-driven algorithm (see
pseudo-code in Fig. 1), the state variables of all neurons
(and possibly synapses) are updated at every tick of
a clock: X(t) → X(t + dt). With non-linear differential
equations, one would use an integration method such
as Euler or Runge–Kutta (Press et al. 1993) or, for HH
models, implicit methods (Hines 1984). Neurons with
complex morphologies are usually spatially discretized
and modelled as interacting compartments: they are
also described mathematically by coupled differential
equations, for which dedicated integration methods
have been developed (for details see e.g. the specific
section of Neuron in this review). If the differential
equations are linear, then the update operation X(t) →
X(t + dt) is also linear, which means updating the state

Fig. 1 A basic clock-driven algorithm

variables amounts simply to multiplying X by a matrix:
X(t + dt) = AX(t) (Hirsch and Smale 1974) (see also
Rotter and Diesmann 1999, for an application to neural
networks), which is very convenient in vector-based
scientific softwares such as Matlab or Scilab. Then,
after updating all variables, the threshold condition is
checked for every neuron. Each neuron that satisfies
this condition produces a spike which is transmitted to
its target neurons, updating the corresponding variables
(X ← gi(X)). For IF models, the membrane potential
of every spiking neuron is reset.

2.3.1 Computational complexity

The simulation time of such an algorithm consists of
two parts: (1) state updates and (2) propagation of
spikes. Assuming the number of state variables for the
whole network scales with the number of neurons N
in the network (which is the case when the reduction
described in Section 2.2 applies), the cost of the update
phase is of order N for each step, so it is O(N/dt)
per second of biological time (dt is the duration of the
time bin). This component grows with the complexity of
the neuron models and the precision of the simulation.
Every second (biological time), an average of F × N
spikes are produced by the neurons (F is the average
firing rate), and each of these needs to be propagated to
p target neurons. Thus, the propagation phase consists
in F × N × p spike propagations per second. These are
essentially additions of weights wi to state variables,
and thus are simple operations whose cost does not
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grow with the complexity of the models. Summing up,
the total computational cost per second of biological
time is of order

Update + Propagation

cU × N
dt

+ cP × F × N × p (∗)

where cU is the cost of one update and cP is the cost
of one spike propagation; typically, cU is much higher
than cP but this is implementation-dependent. There-
fore, for very dense networks, the total is dominated
by the propagation phase and is linear in the number
of synapses, which is optimal. However, in practice
the first phase is negligible only when the following
condition is met:

cP

cU
× F × p × dt >> 1

For example, the average firing rate in the cortex might
be as low as F = 1 Hz (Olshausen and Field 2005),
and assuming p = 10, 000 synapses per neuron and dt =
0.1 ms, we get F × p × dt = 1. In this case, considering
that each operation in the update phase is heavier
than in the propagation phase (especially for complex
models), i.e., cP < cU , the former is likely to dominate
the total computational cost. Thus, it appears that even
in networks with realistic connectivity, increases in pre-
cision (smaller dt, see Section 3) can be detrimental to
the efficiency of the simulation.

2.3.2 Delays

For the sake of simplicity, we ignored transmission
delays in the description above. However it is not very
complicated to include them in a synchronous clock-
driven algorithm. The straightforward way is to store
the future synaptic events in a circular array. Each
element of the array corresponds to a time bin and
contains a list of synaptic events that are scheduled for
that time (see e.g. Morrison et al. 2005). For example, if
neuron i sends a spike to neuron j with delay d (in units
of the time bin dt), then the synaptic event “i → j” is
placed in the circular array at position p + d, where p is
the present position. Circularity of the array means the
addition p + d is modular ((p + d) mod n, where n is
the size of the array—which corresponds to the largest
delay in the system).

What is the additional computational cost of man-
aging delays? In fact, it is not very high and does not
depend on the duration of the time bin. Since every
synaptic event (i → j) is stored and retrieved exactly

once, the computational cost of managing delays for 1 s
of biological time is

cD × F × N × p

where cD is the cost of one store and one retrieve opera-
tion in the circular array (which is low). In other words,
managing delays increases the cost of the propagation
phase in equation (∗) by a small multiplicative factor.

2.3.3 Exact clock-driven simulation

The obvious drawback of clock-driven algorithms as
described above is that spike timings are aligned to
a grid (ticks of the clock), thus the simulation is ap-
proximate even when the differential equations are
computed exactly. Other specific errors come from the
fact that threshold conditions are checked only at the
ticks of the clock, implying that some spikes might
be missed (see Section 3). However, in principle, it is
possible to simulate a network exactly in a clock-driven
fashion when the minimum transmission delay is larger
than the time step. It implies that the precise timing
of synaptic events is stored in the circular array (as
described in Morrison et al. 2007a). Then within each
time bin, synaptic events for each neuron are sorted
and processed in the right order, and when the neuron
spikes, the exact spike timing is calculated. Neurons can
be processed independently in this way only because
the time bin is smaller than the smallest transmission
delay (neurons have no influence on each other within
one time bin).

Some sort of clock signal can also be used in general
event-driven algorithms without the assumption of a
minimum positive delay. For example, one efficient
data structure used in discrete event systems to store
events is a priority queue known as “calendar queue”
(Brown 1988), which is a dynamic circular array of
sorted lists. Each “day” corresponds to a time bin, as
in a classical circular array, and each event is placed
in the calendar at the corresponding day; all events on
a given day are sorted according to their scheduling
time. If the duration of the day is correctly set, then
insertions and extractions of events take constant time
on average. Note that, in contrast with standard clock-
driven simulations, the state variables are not updated
at ticks of the clock and the duration of the days de-
pends neither on the precision of the simulation nor on
the transmission delays (it is rather linked to the rate of
events)—in fact, the management of the priority queue
is separated from the simulation itself.

Note however that in all these cases, state variables
need to be updated at the time of every incoming
spike rather than at every tick of the clock in order
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to simulate the network exactly (e.g. simple vector-
based updates X ← AX are not possible), so that the
term event-driven may be a better description of these
algorithms (the precise terminology may vary between
authors).

2.3.4 Noise in synchronous algorithms

Noise can be introduced in synchronous simulations by
essentially two means:

1. Adding random external spikes
2. Simulating a stochastic process

Suppose a given neuron receives F random spikes
per second, according to a Poisson process. Then the
number of spikes in one time bin follows a Poisson
distribution with mean F × dt. Thus one can simulate
random external spike trains by letting each tick of the
clock trigger a random number of synaptic updates.
If F × dt is low, the Poisson distribution is almost a
Bernouilli distribution (i.e., there is one spike with
probability F × dt). It is straightforward to extend the
procedure to inhomogeneous Poisson processes by al-
lowing F to vary in time. The additional computational
cost is proportional to Fext × N, where Fext is the av-
erage rate of external synaptic events for each neuron
and N is the number of neurons. Note that Fext can be
quite large since it represents the sum of firing rates of
all external neurons (for example it would be 10, 000
Hz for 10, 000 external synapses per neuron with rate
1 Hz).

To simulate a large number of external random
spikes, it can be advantageous to simulate directly the
total external synaptic input as a stochastic process, e.g.
white or colored noise (Ornstein–Uhlenbeck). Linear
stochastic differential equations are analytically solv-
able, therefore the update X(t) → X(t + dt) can be
calculated exactly with matrix computations (Arnold
1974) (X(t + dt) is, conditionally to X(t), a normally dis-
tributed random variable whose mean and covariance
matrix can be calculated as a function of X(t)). Nonlin-
ear stochastic differential equations can be simulated
using approximation schemes, e.g. stochastic Runge–
Kutta (Honeycutt 1992).

2.4 Asynchronous or event-driven algorithms

Asynchronous or event-driven algorithms are not as
widely used as clock-driven ones because they are
significantly more complex to implement (see pseudo-
code in Fig. 3) and less universal. Their key advantages
are a potential gain in speed due to not calculating
many small update steps for a neuron in which no

event arrives and that spike timings are computed
exactly (but see below for approximate event-driven
algorithms); in particular, spike timings are not aligned
to a time grid anymore (which is a source of potential
errors, see Section 3).

The problem of simulating dynamical systems with
discrete events is a well established research topic
in computer science (Ferscha 1996; Sloot et al. 1999;
Fujimoto 2000; Zeigler et al. 2000) (see also Rochel and
Martinez 2003; Mayrhofer et al. 2002), with appropriate
data structures and algorithms already available to the
computational neuroscience community. We start by
describing the simple case when synaptic interactions
are instantaneous, i.e., when spikes can be produced
only at times of incoming spikes (no latency); then we
will turn to the most general case.

2.4.1 Instantaneous synaptic interactions

In an asynchronous or event-driven algorithm, the sim-
ulation advances from one event to the next event.
Events can be spikes coming from neurons in the
network or external spikes (typically random spikes
described by a Poisson process). For models in which
spikes can be produced by a neuron only at times of
incoming spikes, event-driven simulation is relatively
easy (see pseudo-code in Fig. 2). Timed events are
stored in a queue (which is some sort of sorted list). One
iteration consists in

1. Extracting the next event
2. Updating the state of the corresponding neuron

(i.e., calculating the state according to the differ-
ential equation and adding the synaptic weight)

3. Checking if the neuron satisfies the threshold con-
dition, in which case events are inserted in the
queue for each downstream neuron

Fig. 2 A basic event-driven algorithm with instantaneous synap-
tic interactions
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In the simple case of identical transmission de-
lays, the data structure for the queue can be just
a FIFO queue (First In, First Out), which has fast
implementations (Cormen et al. 2001). When the delays
take values in a small discrete set, the easiest way is to
use one FIFO queue for each delay value, as described
in Mattia and Del Giudice (2000). It is also more
efficient to use a separate FIFO queue for handling
random external events (see paragraph about noise
below).

In the case of arbitrary delays, one needs a more
complex data structure. In computer science, efficient
data structures to maintain an ordered list of time-
stamped events are grouped under the name priority
queues (Cormen et al. 2001). The topic of priority
queues is dense and well documented; examples are
binary heaps, Fibonacci heaps (Cormen et al. 2001),
calendar queues (Brown 1988; Claverol et al. 2002) or
van Emde Boas trees (van Emde Boas et al. 1976) (see
also Connollly et al. 2003, in which various priority
queues are compared). Using an efficient priority queue
is a crucial element of a good event-driven algorithm. It
is even more crucial when synaptic interactions are not
instantaneous.

2.4.2 Non-instantaneous synaptic interactions

For models in which spike times do not necessarily oc-
cur at times of incoming spikes, event-driven simulation
is more complex. We first describe the basic algorithm
with no delays and no external events (see pseudo-code
in Fig. 3). One iteration consists in

1. Finding which neuron is the next one to spike

Fig. 3 A basic event-driven algorithm with non-instantaneous
synaptic interactions

2. Updating this neuron
3. Propagating the spike, i.e., updating its target

neurons

The general way to do that is to maintain a sorted list
of the future spike timings of all neurons. These spike
timings are only provisory since any spike in the net-
work can modify all future spike timings. However, the
spike with lowest timing in the list is certified. There-
fore, the following algorithm for one iteration guaran-
tees the correctness of the simulation (see Fig. 3):

1. Extract the spike with lowest timing in the list
2. Update the state of the corresponding neuron and

recalculate its future spike timing
3. Update the state of its target neurons
4. Recalculate the future spike timings of the target

neurons

For the sake of simplicity, we ignored transmission
delays in the description above. Including them in an
event-driven algorithm is not as straightforward as in a
clock-driven algorithm, but it is a minor complication.
When a spike is produced by a neuron, the future
synaptic events are stored in another priority queue
in which the timings of events are non-modifiable.
The first phase of the algorithm (extracting the spike
with lowest timing) is replaced by extracting the next
event, which can be either a synaptic event or a spike
emission. One can use two separate queues or a single
one. External events can be handled in the same way.
Although delays introduce complications in coding
event-driven algorithms, they can in fact simplify the
management of the priority queue for outgoing spikes.
Indeed, the main difficulty in simulating networks with
non-instantaneous synaptic interactions is that sched-
uled outgoing spikes can be canceled, postponed or
advanced by future incoming spikes. If transmission
delays are greater than some positive value τmin, then
all outgoing spikes scheduled in [t, t + τmin] (t being the
present time) are certified. Thus, algorithms can exploit
the structure of delays to speed up the simulation (Lee
and Farhat 2001).

2.4.3 Computational complexity

Putting aside the cost of handling external events
(which is minor), we can subdivide the computational
cost of handling one outgoing spike as follows (assum-
ing p is the average number of synapses per neuron):

• Extracting the event (in case of non-instantaneous
synaptic interactions)

• Updating the neuron and its targets: p + 1 updates
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• Inserting p synaptic events in the queue (in case of
delays)

• Updating the spike times of p + 1 neurons (in case
of non-instantaneous synaptic interactions)

• Inserting or rescheduling p + 1 events in the queue
(future spikes for non-instantaneous synaptic
interactions)

Since there are F × N spikes per second of biological
time, the number of operations is approximately pro-
portional to F × N × p. The total computational cost
per second of biological time can be written concisely
as follows:

Update + Spike + Queue
(cU + cS + cQ) ×F × N × p

where cU is the cost of one update of the state variables,
cS is the cost of calculating the time of the next spike
(non-instantaneous synaptic interactions) and cQ is the
average cost of insertions and extractions in the priority
queue(s). Thus, the simulation time is linear in the
number of synapses, which is optimal. Nevertheless, we
note that the operations involved are heavier than in
the propagation phase of clock-driven algorithms (see
previous section), therefore the multiplicative factor is
likely to be larger. We have also assumed that cQ is
O(1), i.e., that the dequeue and enqueue operations can
be done in constant average time with the data struc-
ture chosen for the priority queue. In the simple case of
instantaneous synaptic interactions and homogeneous
delays, one can use a simple FIFO queue (First In,
First Out), in which insertions and extractions are very
fast and take constant time. For the general case, data
structures for which dequeue and enqueue operations
take constant average time (O(1)) exist, e.g. calendar
queues (Brown 1988; Claverol et al. 2002), however
they are quite complex, i.e., cQ is a large constant.
In simpler implementations of priority queues such
as binary heaps, the dequeue and enqueue operations
take O(log m) operations, where m is the number of
events in the queue. Overall, it appears that the crucial
component in general event-driven algorithms is the
queue management.

2.4.4 What models can be simulated in an event-driven
fashion?

Event-driven algorithms implicitly assume that we can
calculate the state of a neuron at any given time, i.e., we
have an explicit solution of the differential equations
(but see below for approximate event-driven simula-
tion). This would not be the case with e.g. HH models.
Besides, when synaptic interactions are not instanta-

neous, we also need a function that maps the current
state of the neuron to the timing of the next spike
(possibly +∞ if there is none).

So far, algorithms have been developed for simple
pulse-coupled IF models (Watts 1994; Claverol et al.
2002; Delorme and Thorpe 2003) and more complex
ones such as some instances of the Spike Response
Model (Makino 2003; Marian et al. 2002; Gerstner
and Kistler 2002) (note that the SRM model can
usually be restated in the differential formalism of
Section 2.1). Recently, Djurfeldt et al. (2005) intro-
duced several IF models with synaptic conductances
which are suitable for event-driven simulation. Al-
gorithms were also recently developed by Brette to
simulate exactly IF models with exponential synap-
tic currents (Brette 2007) and conductances (Brette
2006), and extended this work to the quadratic model
(Ermentrout and Kopell 1986). However, there are
still efforts to be made to design suitable algo-
rithms for more complex models [for example the
two-variable IF models of Izhikevich (2003) and
Brette and Gerstner (2005)], or to develop more
realistic models that are suitable for event-driven
simulation.

2.4.5 Noise in event-driven algorithms

As for synchronous algorithms, there are two ways to
introduce noise in a simulation: (1) adding random
external spikes; (2) simulating a stochastic process.

The former case is by far easier in asynchronous
algorithms. It simply amounts to adding a queue with
external events, which is usually easy to implement. For
example, if external spikes are generated according to a
Poisson process with rate F, the timing of the next event
if random variable with exponential distribution with
1/F. If n neurons receive external spike trains given
by independent Poisson processes with rate F, then the
time of the next event is exponentially distributed with
mean 1/(nF) and the label of the neuron receiving this
event is picked at random in {1, 2, . . . , n}. Inhomoge-
neous Poisson processes can be simulated exactly in
a similar way (Daley and Vere-Jones 1988). If r(t) is
the instantaneous rate of the Poisson process and is
bounded by M (r(t) ≤ M), then one way to generate
a spike train according to this Poisson process in the in-
terval [0, T] is as follows: generate a spike train in [0, T]
according to a homogeneous Poisson process with rate
T ∗ M; for each spike at time ti, draw a random number
xi from a uniform distribution in [0, M]; select all spikes
such that xi ≤ r(ti).

Simulating directly a stochastic process in asynchro-
nous algorithms is much harder because even for the
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simplest stochastic neuron models, there is no closed
analytical formula for the distribution of the time to
the next spike (see e.g. Tuckwell 1988). It is however
possible to use precalculated tables when the dynamical
systems are low dimensional (Reutimann et al. 2003)
(i.e., not more than 2 dimensions). Note that simu-
lating noise in this way introduces provisory events
in the same way as for non-instantaneous synaptic
interactions.

2.4.6 Approximate event-driven algorithms

We have described asynchronous algorithms for sim-
ulating neural networks exactly. For complex neuron
models of the HH type, Lytton and Hines (2005) have
developed an asynchronous simulation algorithm which
consists in using for each neuron an independent time
step whose width is reduced when the membrane po-
tential approaches the action potential threshold.

3 Precision of different simulation strategies

As shown in this paper, a steadily growing number of
neural simulation environments endows computational
neuroscience with tools which, together with the steady
improvement of computational hardware, allow the
simulation of neural systems with increasing complex-
ity, ranging from detailed biophysical models of single
cells up to large-scale neural networks. Each of these
simulation tools pursues the quest for a compromise
between efficiency in speed and memory consumption,
flexibility in the type of questions addressable, and
precision or exactness in the numerical treatment of the
latter. In all cases, this quest leads to the implemen-
tation of a specific strategy for numerical simulations
which is found to be optimal given the set of con-
straints set by the particular simulation tool. However,
as shown recently (Hansel et al. 1998; Lee and Farhat
2001; Morrison et al. 2007a), quantitative results and
their qualitative interpretation strongly depend on the
simulation strategy utilized, and may vary across avail-
able simulation tools or for different settings within the
same simulator. The specificity of neuronal simulations
is that spikes induce either a discontinuity in the dy-
namics (IF models) or have very fast dynamics (HH
type models). When using approximation methods, this
problem can be tackled by spike timing interpolation
in the former case (Hansel et al. 1998; Shelley and Tao
2001) or integration with adaptive time step in the latter
case (Lytton and Hines 2005). Specifically in networks
of IF neurons, which to date remain almost exclusively
the basis for accessing dynamics of large-scale neural

populations (but see Section 4.7), crucial differences in
the appearance of synchronous activity patterns were
observed, depending on the temporal resolution of the
neural simulator or the integration method used.

In this section we address this question using one
of the most simple analytically solvable leaky IF (LIF)
neuron model, namely the classic LIF neuron, de-
scribed by the state equation

τm
dm(t)

dt
+ m(t) = 0 , (1)

where τm = 20 ms denotes the membrane time constant
and 0 ≤ m(t) ≤ 1. Upon arrival of a synaptic event at
time t0, m(t) is updated by a constant �m = 0.1 (�m =
0.0085 in network simulations) after which it decays
according to

m(t) = m(t0) exp
[
− t − t0

τm

]
. (2)

If m exceeds a threshold mthres = 1, the neuron fires and
is afterwards reset to a resting state mrest = 0 in which it
stays for an absolute refractory period tref = 1 ms. The
neurons were subject to non-plastic or plastic synaptic
interactions. In the latter case, spike-timing-dependent
synaptic plasticity (STDP) was used according to a
model by Song and Abbott (2001). In this case, upon
arrival of a synaptic input at time tpre, synaptic weights
are changed according to

g ← g + F(�t) gmax , (3)

where

F(�t) = ±A± exp{±�t/τ±} (4)

for �t = tpre − tpost < 0 and �t ≥ 0, respectively. Here,
tpost denotes the time of the nearest postsynaptic spike,
A± quantify the maximal change of synaptic efficacy,
and τ± determine the range of pre- to postsynap-
tic spike intervals in which synaptic weight changes
occur. Comparing simulation strategies at the both
ends of a wide spectrum, namely a clock-driven algo-
rithm (see Section 2.3) and event-driven algorithm (see
Section 2.4), we evaluate to which extent the temporal
precision of spiking events impacts on neuronal dynam-
ics of single as well as small networks. These results
support the argument that the speed of neuronal sim-
ulations should not be the sole criteria for evaluation of
simulation tools, but must complement an evaluation of
their exactness.
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different temporal resolutions. Observed differences in neural
network dynamics include delays, cancellation or generation of
synchronous network events [figure modified from Rudolph and
Destexhe (2007)]

3.1 Neuronal systems without STDP

In the case of a single LIF neuron with non-plastic
synapses subject to a frozen synaptic input pattern
drawn from a Poisson distribution with rate νinp =
250 Hz, differences in the discharge behavior seen
in clock-driven simulations at different resolutions
(0.1 ms, 0.01 ms, 0.001 ms) and event-driven simulations
occurred already after short periods of simulated neural
activity (Fig. 4(a)). These deviations were caused by
subtle differences in the subthreshold integration of
synaptic input events due to temporal binning, and “de-
cayed” with a constant which depended on the mem-
brane time constant. However, for a strong synaptic
drive, subthreshold deviations could accumulate and
lead to marked delays in spike times, cancellation of
spikes or occurrence of additional spikes. Although
differences at the single cell level remained widely
constrained and did not lead to changes in the sta-
tistical characterization of the discharge activity when
long periods of neural activity were considered, already
small differences in spike times of individual neurons
can lead to crucial differences in the population activity,
such as synchronization (see Hansel et al. 1998; Lee
and Farhat 2001), if neural networks are concerned.
We investigated this possibility using a small network
of 15×15 LIF neurons with all-to-all excitatory con-
nectivity with fixed weights and not distance-dependent

synaptic transmission delay (0.2 ms), driven by a fixed
pattern of superthreshold random synaptic inputs to
each neuron (average rate 250 Hz; weight �m = 0.1). In
such a small network, the activity remained primarily
driven by the external inputs, i.e. the influence of in-
trinsic connectivity is small. However, due to small dif-
ferences in spike times due to temporal binning could
had severe effects on the occurrence of synchronous
network events where all (or most) cells discharge at
the same time. Such events could be delayed, canceled
or generated depending on the simulation strategy or
temporal resolution utilized (Fig. 4(b)).

3.2 Neuronal systems with STDP

The above described differences in the behavior of
neural systems simulated by using different simulation
strategies remain constrained to the observed neuronal
dynamics and are minor if some statistical measures,
such as average firing rates, are considered. More se-
vere effects can be expected if biophysical mechanism
which depend on the exact times of spikes are incorpo-
rated into the neural model. One of these mechanism
is short-term synaptic plasticity, in particular STDP. In
this case, the self-organizing capability of the neural
system considered will yield different paths along which
the systems will develop, and, thus, possibly lead to a
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neural behavior which not only quantitatively but also
qualitatively may differ across various tools utilized for
the numerical simulation.

To explain why such small differences in the ex-
act timing of events are crucial if models with STDP
are considered, consider a situation in which multiple
synaptic input events arrive in between two state up-
dates at t and t + dt in a clock-driven simulation. In the
latter case, the times of these events are assigned to the
end of the interval (Fig. 5(a)). In the case these inputs
drive the cell over firing threshold, the synaptic weights
of all three synaptic input channels will be facilitated by
the same amount according to the used STDP model.
In contrast, if exact times are considered, the same
input pattern could cause a discharge already after only
two synaptic inputs. In this case the synaptic weights
liked to these inputs will be facilitated, whereas the
weight of the input arriving after the discharge will be
depressed.

Although the chance for the occurrence of situa-
tions such as those described above may appear small,
already one instance will push the considered neural
system onto a different path in its self-organization. The
latter may lead to systems whose qualitative behavior
may, after some time, markedly vary from a system with
the same initial state but simulated by another, tempo-
rally more or less precise simulation strategy. Such a
scenario was investigated by using a single LIF neuron
(τm = 4.424 ms) with 1,000 plastic synapses (A+ = 0.005,
A−/A+ = 1.05, τ+ = 20 ms, τ− = 20 ms, gmax = 0.4)
driven by the same pattern of Poisson-distributed ran-
dom inputs (average rate 5 Hz, �m =0.1). Simulating
only 1,000 s neural activity led to marked differences
in the temporal development of the average rate be-

tween clock-driven simulations with a temporal resolu-
tion of 0.1 ms and event-driven simulations (Fig. 5(b)).
Considering the average firing rate over the whole
simulated window, clock-driven simulations led to an
about 10 % higher value compared to the event-driven
approach, and approached the value observed in event-
driven simulations only when the temporal resolution
was increased by two orders of magnitude. Moreover,
different simulation strategies and temporal resolutions
led also to a significant difference in the synaptic weight
distribution at different times (Fig. 5(c)).

Both findings show that the small differences in the
precision of synaptic events can have a severe impact
even on statistically very robust measures, such as av-
erage rate or weight distribution. Considering the tem-
poral development of individual synaptic weights, both
depression and facilitation were observed depending
on the temporal precision of the numerical simulation
Indeed, the latter could have severe impact on the
qualitative interpretation of the temporal dynamics of
structured networks, as this result suggests that synap-
tic connections in otherwise identical models can be
strengthened or weakened due to the influence of the
utilized simulation strategy or simulation parameters.

In conclusion, the results presented in this section
suggest that the strategy and temporal precision used
for neural simulations can severely alter simulated
neural dynamics. Although dependent on the neural
system modeled, observed differences may turn out to
be crucial for the qualitative interpretation of the result
of numerical simulations, in particular in simulations
involving biophysical processes depending on the exact
order or time of spike events (e.g. as in STDP). Thus,
the search for an optimal neural simulation tool or
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strategy for the numerical solution of a given problem
should be guided not only by its absolute speed and
memory consumption, but also its numerical exactness.

4 Overview of simulation environments

4.1 NEURON

4.1.1 NEURON’s domain of utility

NEURON is a simulation environment for creating
and using empirically-based models of biological neu-
rons and neural circuits. Initially it earned a reputation
for being well-suited for COBA models of cells with
complex branched anatomy, including extracellular po-
tential near the membrane, and biophysical properties
such as multiple channel types, inhomogeneous chan-
nel distribution, ionic accumulation and diffusion, and
second messengers. In the early 1990s, NEURON was
already being used in some laboratories for network
models with many of thousands of cells, and over the
past decade it has undergone many enhancements that
make the construction and simulation of large-scale
network models easier and more efficient.

To date, more than 600 papers and books have de-
scribed NEURON models that range from a membrane
patch to large scale networks with tens of thousands
of COBA or artificial spiking cells.1 In 2005, over 50
papers were published on topics such as mechanisms
underlying synaptic transmission and plasticity (Banitt
et al. 2005), modulation of synaptic integration by sub-
threshold active currents (Prescott and De Koninck
2005), dendritic excitability (Day et al. 2005), the role
of gap junctions in networks (Migliore et al. 2005),
effects of synaptic plasticity on the development and
operation of biological networks (Saghatelyan et al.
2005), neuronal gain (Azouz 2005), the consequences of
synaptic and channel noise for information processing
in neurons and networks (Badoual et al. 2005), cellu-
lar and network mechanisms of temporal coding and
recognition (Kanold and Manis 2005), network states
and oscillations (Wolf et al. 2005), effects of aging
on neuronal function (Markaki et al. 2005), cortical
recording (Moffitt and McIntyre 2005), deep brain stim-
ulation (Grill et al. 2005), and epilepsy resulting from
channel mutations (Vitko et al. 2005) and brain trauma
(Houweling et al. 2005).

1http://www.neuron.yale.edu/neuron/bib/usednrn.html

4.1.2 How NEURON differs from other
neurosimulators

The chief rationale for domain-specific simulators over
general purpose tools lies in the promise of improved
conceptual control, and the possibility of exploiting
the structure of model equations for the sake of com-
putational robustness, accuracy, and efficiency. Some
of the key differences between NEURON and other
neurosimulators are embodied in the way that they
approach these goals.

4.1.2.1 Conceptual control The cycle of hypothesis
formulation, testing, and revision, which lies at the
core of all scientific research, presupposes that one can
infer the consequences of a hypothesis. The principal
motivation for computational modeling is its utility for
dealing with hypotheses whose consequences cannot
be determined by unaided intuition or analytical ap-
proaches. The value of any model as a means for eval-
uating a particular hypothesis depends critically on the
existence of a close match between model and hypoth-
esis. Without such a match, simulation results cannot
be a fair test of the hypothesis. From the user’s view-
point, the first barrier to computational modeling is the
difficulty of achieving conceptual control, i.e. making
sure that a computational model faithfully reflects one’s
hypothesis.

NEURON has several features that facilitate con-
ceptual control, and it is acquiring more of them as
it evolves to meet the changing needs of computa-
tional neuroscientists. Many of these features fall into
the general category of “native syntax” specification
of model properties: that is, key attributes of biolog-
ical neurons and networks have direct counterparts
in NEURON. For instance, NEURON users specify
the gating properties of voltage- and ligand-gated ion
channels with kinetic schemes or families of HH style
differential equations. Another example is that models
may include electronic circuits constructed with the
LinearCircuitBuilder, a GUI tool whose palette in-
cludes resistors, capacitors, voltage and current sources,
and operational amplifiers. NEURON’s most striking
application of native syntax may lie in how it handles
the cable properties of neurons, which is very differ-
ent from any other neurosimulator. NEURON users
never have to deal directly with compartments. Instead,
cells are represented by unbranched neurites, called
sections, which can be assembled into branched archi-
tectures (the topology of a model cell). Each section has
its own anatomical and biophysical properties, plus a

http://www.neuron.yale.edu/neuron/bib/usednrn.html
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discretization parameter that specifies the local resolu-
tion of the spatial grid. The properties of a section can
vary continuously along its length, and spatially inho-
mogeneous variables are accessed in terms of normal-
ized distance along each section (Hines and Carnevale
1997) (Chapter 5 in Carnevale and Hines 2006). Once
the user has specified cell topology, and the geometry,
biophysical properties, and discretization parameter for
each section, NEURON automatically sets up the inter-
nal data structures that correspond to a family of ODEs
for the model’s discretized cable equation.

4.1.2.2 Computational robustness, accuracy, and
efficiency NEURON’s spatial discretization of COBA
model neurons uses a central difference approximation
that is second order correct in space. The discretization
parameter for each section can be specified by the user,
or assigned automatically according to the d_lambda
rule (see Hines and Carnevale 1997) (Chapters 4 and
5 in Carnevale and Hines 2006).

For efficiency, NEURON’s computational engine
uses algorithms that are tailored to the model sys-
tem equations (Hines 1984, 1989; Hines and Carnevale
1997). To advance simulations in time, users have a
choice of built-in clock driven (fixed step backward
Euler and Crank-Nicholson) and event driven meth-
ods (global variable step and local variable step with
second order threshold detection); the latter are based
on CVODES and IDA from SUNDIALS (Hindmarsh
et al. 2005). Networks of artificial spiking cells are
solved analytically by a discrete event method that
is several orders of magnitude faster than continu-
ous system simulation (Hines and Carnevale 1997).
NEURON fully supports hybrid simulations, and mod-
els can contain any combination of COBA neurons and
analytically computable artificial spiking cells. Simu-
lations of networks that contain COBA neurons are
second order correct if adaptive integration is used
(Lytton and Hines 2005).

Synapse and artificial cell models accept discrete
events with input stream specific state information. It is
often extremely useful for artificial cell models to send
events to themselves in order to implement refractory
periods and intrinsic firing properties; the delivery time
of these “self events” can also be adjusted in response
to intervening events. Thus instantaneous and non-
instantaneous interactions of Section 2.4 are supported.

Built-in synapses exploit the methods described in
Section 2.2. Arbitrary delay between generation of an
event at its source, and delivery to the target (including
0 delay events), is supported by a splay-tree queue

(Sleator and Tarjan 1983) which can be replaced at
configuration time by a calendar queue. If the minimum
delay between cells is greater than 0, self events do
not use the queue and parallel network simulations
are supported. For the fixed step method, when queue
handling is the rate limiting step, a bin queue can
be selected. For the fixed step method with parallel
simulations, when spike exchange is the rate limiting
step, six-fold spike compression can be selected.

4.1.3 Creating and using models with NEURON

Models can be created by writing programs in an in-
terpreted language based on hoc (Kernighan and Pike
1984), which has been enhanced to simplify the task of
representing the properties of biological neurons and
networks. Users can extend NEURON by writing new
function and biophysical mechanism specifications in
the NMODL language, which is then compiled and dy-
namically linked (Hines and Carnevale 1997) (chapter 9
in Carnevale and Hines 2006). There is also a powerful
GUI for conveniently building and using models; this
can be combined with hoc programming to exploit the
strengths of both (Fig. 6).

The past decade has seen many enhancements to
NEURON’s capabilities for network modeling. First
and most important was the addition of an event deliv-
ery system that substantially reduces the computational
burden of simulating spike-triggered synaptic transmis-
sion, and enabled the creation of analytic IF cell models
which can be used in any combination with COBA
cells. Just in the past year the event delivery system was
extended so that NEURON can now simulate models
of networks and cells that are distributed over parallel
hardware (see NEURON in a parallel environment
below).

4.1.3.1 The GUI The GUI contains a large num-
ber of tools that can be used to construct models,
exercise simulations, and analyze results, so that no
knowledge of programming is necessary for the pro-
ductive use of NEURON. In addition, many GUI tools
provide functionality that would be quite difficult for
users to replicate by writing their own code. Some
examples are:

• Model specification tools
Channel builder—specifies voltage- and ligand-

gated ion channels in terms of ODEs (HH-style,
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Fig. 6 NEURON graphical user interface. In developing large
scale networks, it is helpful to start by debugging small prototype
nets. NEURON’s GUI, especially its Network Builder (shown
here), can simplify this task. Also, at the click of a button the

Network Builder generates hoc code that can be reused as the
building blocks for large scale nets [see Chapter 11, “Modeling
networks” in Carnevale and Hines (2006)]

including Borg–Graham formulation) and/or kine-
tic schemes. Channel states and total conductance
can be simulated as deterministic (continuous in
time), or stochastic (countably many channels with
independent state transitions, producing abrupt
conductance changes).

Cell builder—manages anatomical and biophysi-
cal properties of model cells.

Network builder—prototypes small networks
that can be mined for reusable code to develop
large-scale networks (Chapter 11 in Carnevale and
Hines 2006).

Linear circuit builder—specifies models in-
volving gap junctions, ephaptic interactions, dual-

electrode voltage clamps, dynamic clamps, and
other combinations of neurons and electrical circuit
elements.

• Model analysis tools
Import3D—converts detailed morphometric

data (Eutectic, Neurolucida, and SWC formats)
into model cells. It automatically fixes many
common errors, and helps users identify complex
problems that require judgment.

Model view—automatically discovers and
presents a summary of model properties in a
browsable textual and graphical form. This aids
code development and maintenance, and is
increasingly important as code sharing grows.
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Impedance—compute and display voltage trans-
fer ratios, input and transfer impedance, and the
electrotonic transformation.

• Simulation control tools
Variable step control—automatically adjusts the

state variable error tolerances that regulate adap-
tive integration.

Multiple run fitter—optimizes function and
model parameters.

4.1.4 NEURON in a parallel environment

NEURON supports three kinds of parallel processing.

1. Multiple simulations distributed over multiple
processors, each processor executing its own sim-
ulation. Communication between master processor
and workers uses a bulletin-board method similar
to Linda (Carriero and Gelernter 1989).

2. Distributed network models with gap junctions.

3. Distributed models of individual cells (each proces-
sor handles part of the cell). At present, setting
up distributed models of individual cells requires
considerable effort; in the future it will be made
much more convenient.

The four benchmark simulations of spiking neural
networks (see Appendix B) were implemented under
NEURON. Figure 7(a) demonstrates the speedup that
NEURON can achieve with distributed network mod-
els of the four types [COBA, current-based (CUBA),
HH, event-based—see Appendix B] on a Beowulf clus-
ter (dashed lines are “ideal” – run time inversely pro-
portional to number of CPUs – and solid symbols are
actual run times). Figure 7(b) shows that performance
improvement scales with the number of processors and
the size and complexity of the network; for this figure
we ran a series of tests using a NEURON implemen-
tation of the single column thalamocortical network
model described by Traub et al. (2005) on the Cray
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Fig. 7 Parallel simulations using NEURON. (a) Four benchmark
network models were simulated on 1, 2, 4, 6, 8, and 12 CPUs
of a Beowulf cluster (6 nodes, dual CPU, 64-bit 3.2 GHz Intel
Xeon with 1024 KB cache). Dashed lines indicate “ideal speedup”
(run time inversely proportional to number of CPUs). Solid
symbols are run time, open symbols are average computation
time per CPU, and vertical bars indicate variation of computation
time. The CUBA and CUBADV models execute so quickly that
little is gained by parallelizing them. The CUBA model is faster
than the more efficient CUBADV because the latter generates
twice as many spikes (spike counts are COBAHH 92,219, COBA
62,349, CUBADV 39,280, CUBA 15,371). (b) The Pittsburgh
Supercomputing Center’s Cray XT3 (2.4 GHz Opteron proces-
sors) was used to simulate a NEURON implementation of the
thalamocortical network model of Traub et al. (2005). This model
has 3,560 cells in 14 types, 3,500 gap junctions, 5,596,810 equa-

tions, and 1,122,520 connections and synapses, and 100 ms of
model time it generates 73,465 spikes and 19,844,187 delivered
spikes. The dashed line indicates “ideal speedup” and solid circles
are the actual run times. The solid black line is the average
computation time, and the intersecting vertical lines mark the
range of computation times for each CPU. Neither the number of
cell classes nor the number of cells in each class were multiples of
the number of processors, so load balance was not perfect. When
800 CPUs were used, the number of equations per CPU ranged
from 5954 to 8516. Open diamonds are average spike exchange
times. Open squares mark average voltage exchange times for the
gap junctions, which must be done at every time step; these lie on
vertical bars that indicate the range of voltage exchange times.
This range is large primarily because of synchronization time due
to computation time variation across CPUs. The minimum value
is the actual exchange time
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XT3 at the Pittsburgh Supercomputer Center. Similar
performance gain has been documented in extensive
tests on parallel hardware with dozens to thousands of
CPUs, using published models of networks of conduc-
tance based neurons (Migliore et al. 2006). Speedup is
linear with the number of CPUs, or even superlinear
(due to larger effective high speed memory cache), until
there are so many CPUs that each one is solving fewer
than 100 equations.

4.1.5 Future plans

NEURON undergoes a continuous cycle of improve-
ment and revision, much of which is devoted to as-
pects of the program that are not immediately obvious
to the user, e.g. improvement of computational effi-
ciency. More noticeable are new GUI tools, such as
the recently added Channel Builder. Many of these
tools exemplify a trend toward “form-based” model
specification, which is expected to continue. The use of
form-based GUI tools increases the ability to exchange
model specifications with other simulators through the
medium of Extensible Markup Language (XML). With
regard to network modeling, the emphasis will shift
away from developing simulation infrastructure, which
is reasonably complete, to the creation of new tools for
network design and analysis.

4.1.6 Software development, support,
and documentation

Michael Hines directs the NEURON project, and
is responsible for almost all code development. The
other members of the development team have varying
degrees of responsibility for activities such as docu-
mentation, courses, and user support. NEURON has
benefited from significant contributions of time and
effort by members of the community of NEURON
users who have worked on specific algorithms, written
or tested new code, etc. Since 2003, user contributions
have been facilitated by adoption of an “open source
development model” so that source code, including the
latest research threads, can be accessed from an on-line
repository.2

Support is available by email, telephone, and consul-
tation. Users can also post questions and share informa-
tion with other members of the NEURON community
via a mailing list and The NEURON Forum.3 Currently
the mailing list has more than 700 subscribers with

2http://www.neuron.yale.edu/neuron/install.html
3https://www.neuron.yale.edu/phpBB2/index.php

“live” email addresses; the Forum, which was launched
in May, 2005, has already grown to 300 registered users
and 1700 posted messages.

Tutorials and reference material are available.4 The
NEURON Book (Carnevale and Hines 2006) is the
authoritative book on NEURON. Four books by
other authors have made extensive use of NEURON
(Destexhe and Sejnowski 2001; Johnston and Wu 1995;
Lytton 2002; Moore and Stuart 2000), and several of
them have posted their code online or provide it on CD
with the book.

Source code for published NEURON models is
available at many WWW sites. The largest code archive
is ModelDB,5 which currently contains 238 models, 152
of which were implemented with NEURON.

4.1.7 Software availability

NEURON runs under UNIX/Linux/OS X, MSWin 98
or later, and on parallel hardware including Beowulf
clusters, the IBM Blue Gene and Cray XT3. NEURON
source code and installers are provided free of charge,6

and the installers do not require “third party” software.
The current standard distribution is version 5.9.39. The
alpha version can be used as a simulator/controller
in dynamic clamp experiments under real-time Linux7

with a National Instruments M series DAQ card.

4.2 GENESIS

4.2.1 GENESIS capabilities and design philosophy

GENESIS (the General Neural Simulation System)
was given its name because it was designed, at the
outset, be an extensible general simulation system
for the realistic modeling of neural and biological
systems (Bower and Beeman 1998). Typical simula-
tions that have been performed with GENESIS range
from subcellular components and biochemical reac-
tions (Bhalla 2004) to complex models of single neu-
rons (De Schutter and Bower 1994), simulations of
large networks (Nenadic et al. 2003), and systems-level
models (Stricanne and Bower 1998). Here, “realistic
models” are defined as those models that are based on
the known anatomical and physiological organization
of neurons, circuits and networks (Bower 1995). For
example, realistic cell models typically include dendritic

4http://www.neuron.yale.edu/neuron/docs/docs.html
5http://senselab.med.yale.edu/senselab/ModelDB
6http://www.neuron.yale.edu
7http://rtai.org

http://www.neuron.yale.edu/neuron/install.html
https://www.neuron.yale.edu/phpBB2/index.php
http://www.neuron.yale.edu/neuron/docs/docs.html
http://senselab.med.yale.edu/senselab/ModelDB
http://www.neuron.yale.edu
http://rtai.org
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morphology and a large variety of ionic conductances,
whereas realistic network models attempt to duplicate
known axonal projection patterns.

Parallel GENESIS (PGENESIS) is an extension
to GENESIS that runs on almost any parallel clus-
ter, SMP, supercomputer, or network of workstations
where MPI and/or PVM is supported, and on which
serial GENESIS itself is runnable. It is customarily
used for large network simulations involving tens of
thousands of realistic cell models (for example, see
Hereld et al. 2005).

GENESIS has a well-documented process for users
themselves to extend its capabilities by adding new
user-defined GENESIS object types (classes), or script
language commands without the need to understand
or modify the GENESIS simulator code. GENESIS
comes already equipped with mechanisms to easily
create large scale network models made from sin-
gle neuron models that have been implemented with
GENESIS.

While users have added, for example, the Izhikevich
(2003) simplified spiking neuron model (now built in to
GENESIS), and they could also add IF or other forms
of abstract neuron models, these forms of neurons are
not realistic enough for the interests of most GENESIS
modelers. For this reason, GENESIS is not normally
provided with IF model neurons, and no GENESIS
implementations have been provided for the IF model
benchmarks (see Appendix B). Typical GENESIS
neurons are multicompartmental models with a va-
riety of HH type voltage- and/or calcium-dependent
conductances.

4.2.2 Modeling with GENESIS

GENESIS is an object-oriented simulation system, in
which a simulation is constructed of basic building
blocks (GENESIS elements). These elements commu-
nicate by passing messages to each other, and each
contains the knowledge of its own variables (fields) and
the methods (actions) used to perform its calculations
or other duties during a simulation. GENESIS elements
are created as instantiations of a particular precompiled
object type that acts as a template. Model neurons
are constructed from these basic components, such
as neural compartments and variable conductance ion
channels, linked with messages. Neurons may be linked
together with synaptic connections to form neural cir-
cuits and networks. This object-oriented approach is
central to the generality and flexibility of the system, as
it allows modelers to easily exchange and reuse models
or model components. Many GENESIS users base their
simulation scripts on the examples that are provided

with GENESIS or in the GENESIS Neural Modeling
Tutorials package (Beeman 2005).

GENESIS uses an interpreter and a high-level sim-
ulation language to construct neurons and their net-
works. This use of an interpreter with pre-compiled
object types, rather than a separate step to compile
scripts into binary machine code, gives the advantage of
allowing the user to interact with and modify a simula-
tion while it is running, with no sacrifice in simulation
speed. Commands may be issued either interactively
to a command prompt, by use of simulation scripts,
or through the graphical interface. The 268 scripting
language commands and the 125 object types provided
with GENESIS are powerful enough that only a few
lines of script are needed to specify a sophisticated
simulation. For example, the GENESIS “cell reader”
allows one to build complex model neurons by reading
their specifications from a data file.

GENESIS provides a variety of mechanisms to
model calcium diffusion and calcium-dependent con-
ductances, as well as synaptic plasticity. There are also
a number of “device objects” that may be interfaced
to a simulation to provide various types of input to
the simulation (pulse and spike generators, voltage
clamp circuitry, etc.) or measurements (peristimulus
and interspike interval histograms, spike frequency
measurements, auto- and cross-correlation histograms,
etc.). Object types are also provided for the modeling
of biochemical pathways (Bhalla and Iyengar 1999).
A list and description of the GENESIS object types,
with links to full documentation, may be found in the
“Objects” section of the hypertext GENESIS Reference
Manual, downloadable or viewable from the GENESIS
web site.

4.2.3 GENESIS graphical user interfaces

Very large scale simulations are often run with no
GUI, with the simulation output to either text or bi-
nary format files for later analysis. However, GENESIS
is usually compiled to include its graphical interface
XODUS, which provides object types and script-level
commands for building elaborate graphical interfaces,
such as the one shown in Fig. 8 for the dual ex-
ponential variation of the HH benchmark simulation
(Benchmark 3 in Appendix B). GENESIS also con-
tains graphical environments for building and run-
ning simulations with no scripting, such as Neurokit
(for single cells) and Kinetikit (for modeling bio-
chemical reactions). These are themselves created as
GENESIS scripts, and can be extended or modified.
This allows for the creation of the many educational
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Fig. 8 The GUI for the
GENESIS implementation of
the HH benchmark, using the
dual-exponential form of
synaptic conductance

tutorials that are included with the GENESIS distrib-
ution (Bower and Beeman 1998).

4.2.4 Obtaining GENESIS and user support

GENESIS and its graphical front-end XODUS are
written in C and are known to run under most Linux
or UNIX-based systems with the X Window System, as
well as Mac OS/X and MS Windows with the Cygwin
environment. The current release of GENESIS and
PGENESIS (ver. 2.3, March 17, 2006) is available from
the GENESIS web site8 under the GNU General Pub-
lic License. The GENESIS source distribution contains
full source code and documentation, as well as a large
number of tutorial and example simulations. Documen-
tation for these tutorials is included along with online
GENESIS help files and the hypertext GENESIS Ref-
erence Manual. In addition to the source distribution,
precompiled binary versions are available for Linux,
Mac OS/X, and Windows with Cygwin. The GENESIS
Neural Modeling Tutorials (Beeman 2005) are a set
of HTML tutorials intended to teach the process of
constructing biologically realistic neural models with
the GENESIS simulator, through the analysis and mod-
ification of provided example simulation scripts. The
latest version of this package is offered as a separate
download from the GENESIS web site.

Support for GENESIS is provided through email to
http://www.genesis@genesis-sim.org, and through the
GENESIS Users Group, BABEL. Members of BA-
BEL receive announcements and exchange informa-
tion through a mailing list, and are entitled to access the

8http://www.genesis-sim.org/GENESIS

BABEL web page. This serves as a repository for the
latest contributions by GENESIS users and developers,
and contains hypertext archives of postings from the
mailing list.

Rallpacks are a set of benchmarks for evaluating
the speed and accuracy of neuronal simulators for
the construction of single cell models (Bhalla et al.
1992). However, it does not provide benchmarks for
network models. The package contains scripts for both
GENESIS and NEURON, as well as full specifications
for implementation on other simulators. It is included
within the GENESIS distribution, and is also available
for download from the GENESIS web site.

4.2.5 GENESIS implementation of the HH benchmark

The HH benchmark network model (Benchmark 3 in
Appendix B) provides a good example of the type of
model that should probably NOT be implemented with
GENESIS. The Vogels and Abbott (2005) IF network
on which it is based is an abstract model designed to
study the propagation of signals under very simplified
conditions. The identical excitatory and inhibitory neu-
rons have no physical location in space, and no distance-
dependent axonal propagation delays in the connections.
The benchmark model simply replaces the IF neurons
with single-compartment cells containing fast sodium
and delayed rectifier potassium channels that fire ton-
ically and display no spike frequency adaptation. Such
models offer no advantages over IF cells for the study
of the situation explored by Vogels and Abbott.

Nevertheless, it is a simple matter to implement such
a model in GENESIS, using a simplification of exist-
ing example scripts for large network models, and the

http://www.genesis@genesis-sim.org
http://www.genesis-sim.org/GENESIS
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performance penalty for “using a sledge hammer to
crack a peanut” is not too large for a network of this
size. The simulation script for this benchmark illustrates
the power of the GENESIS scripting commands for cre-
ating networks. Three basic commands are used for fill-
ing a region with copies of prototype cells, making
synaptic connections with a great deal of control over
the connectivity, and setting propagation delays.

The instantaneous rise in the synaptic conductances
makes this a very efficient model to implement with
a simulator specialized for IF networks, but such a
non-biological conductance is not normally provided
by GENESIS. Therefore, two implementations of the
benchmark have been provided. The Dual Exponential
VA HH Model script implements synaptic conduc-
tances with a dual exponential form having a 2 ms time-
to-peak, and the specified exponential decay times of
5 ms for excitatory connections and 10 ms for inhibitory
connections. The Instantaneous Conductance VA HH
Model script uses a user-added isynchan object type
that can be compiled and linked into GENESIS to
provide the specified conductances with an instanta-
neous rise time. There is little difference in the behavior
of the two versions of the simulation, although the
Instantaneous Conductance model executes somewhat
faster.

Figure 8 shows the implementation of the Dual Ex-
ponential VA HH Model with a GUI that was cre-
ated by making small changes to the example RSnet.g,
protodefs.g, and graphics.g scripts, which are provided
in the GENESIS Modeling Tutorial (Beeman 2005)
section “Creating large networks with GENESIS”.

These scripts and the tutorial specify a rectangu-
lar grid of excitatory neurons. An exercise suggests
adding an additional layer of inhibitory neurons. The
GENESIS implementations of the HH benchmark use

a layer of 64 × 50 excitatory neurons and a layer of
32 × 25 inhibitory neurons. A change of one line in
the example RSnet.g script allows the change from the
nearest-neighbor connectivity of the model to the re-
quired infinite-range connectivity with 2% probability.

The identical excitatory and inhibitory neurons
used in the network are implemented as specified in
Appendix B. For both versions of the model, Poisson-
distributed random spike inputs with a mean frequency
of 70 Hz were applied to the excitatory synapses of the
all excitatory neurons. The the simulation was run for
0.05 s, the random input was removed, and it was then
run for an additional 4.95 s.

The Control Panel at the left is used to run the sim-
ulation and to set parameters such as maximal synaptic
conductances, synaptic weight scaling, and propagation
delays. There are options to provide current injection
pulses, as well as random synaptic activation. The plots
in the middle show the membrane potentials of three
excitatory neurons (0, 1536, and 1567), and inhibitory
neuron 0. The netview displays at the right show the
membrane potentials of the excitatory neurons (top)
and inhibitory neurons (bottom). With no propagation
delays, the positions of the neurons on the grid are
irrelevant. Nevertheless, this two-dimensional repre-
sentation of the network layers makes it easy to visu-
alize the number of cells firing at any time during the
simulation.

Figure 9 shows the plots for the membrane potential
of the same neurons as those displayed in Fig. 8, but
produced by the Instantaneous Conductance VA HH
Model script. The plot at the right shows a zoom of the
interval between 3.2 and 3.4 s.

In both figures, excitatory neuron 1536 has the
lowest ratio of excitatory to inhibitory inputs of the
four neurons plotted. It fires only rarely, whereas

Fig. 9 Membrane potentials
for four selected neurons
of the Instantaneous
Conductance VA HH Model
in GENESIS. (a) The entire
5 s of the simulation.
(b) Detail of the interval
3.2–3.4 s
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excitatory neuron 0, which has the highest ratio, fires
most frequently.

4.2.6 Future plans for GENESIS

The GENESIS simulator is now undergoing a major
redevelopment effort, which will result in GENESIS
3. The core simulator functionality is being reim-
plemented in C++ using an improved scheme for
messaging between GENESIS objects, and with a
platform-independent and browser-friendly Java-based
GUI. This will result in not only improved perfor-
mance and portability to MS Windows and non-UNIX
platforms, but will also allow the use of alternate
script parsers and user interfaces, as well as the ability
to communicate with other modeling programs and
environments. The GENESIS development team is
participating in the NeuroML (Goddard et al. 2001;
Crook et al. 2005) project,9 along with the devel-
opers of NEURON. This will enable GENESIS 3
to export and import model descriptions in a com-
mon simulator-independent XML format. Develop-
ment versions of GENESIS are available from the
Sourceforge GENESIS development site.10

4.3 NEST

4.3.1 The NEST initiative

The problem of simulating neuronal networks of bi-
ologically realistic size and complexity has long been
underestimated. This is reflected in the limited num-
ber of publications on suitable algorithms and data
structures in high-level journals. The lack of awareness
of researchers and funding agencies of the need for
progress in simulation technology and sustainability of
the investments may partially originate from the fact
that a mathematically correct simulator for a particular
neuronal network model can be implemented by an
individual in a few days. However, this has routinely re-
sulted in a cycle of unscalable and unmaintainable code
being rewritten in unmaintainable fashion by novices,
with little progress in the theoretical foundations.

Due to the increased availability of computational
resources, simulation studies are becoming ever more
ambitious and popular. Indeed, many neuroscientific
questions are presently only accessible through sim-
ulation. An unfortunate consequence of this trend is
that it is becoming ever harder to reproduce and verify

9http://www.neuroml.org
10http://sourceforge.net/projects/genesis-sim

the results of these studies. The ad hoc simulation
tools of the past cannot provide us with the appro-
priate degree of comprehensibility. Instead we require
carefully crafted, validated, documented and expressive
neuronal network simulators with a wide user commu-
nity. Moreover, the current progress towards more re-
alistic models demands correspondingly more efficient
simulations. This holds especially for the nascent field
of studies on large-scale network models incorporating
plasticity. This research is entirely infeasible without
parallel simulators with excellent scaling properties,
which is outside the scope of ad hoc solutions. Fi-
nally, to be useful to a wide scientific audience over a
long time, simulators must be easy to maintain and to
extend.

On the basis of these considerations, the NEST ini-
tiative was founded as a long term collaborative project
to support the development of technology for neural
systems simulations (Diesmann and Gewaltig 2002).
The NEST simulation tool is the reference implemen-
tation of this initiative. The software is provided to
the scientific community under an open source license
through the NEST initiative’s website.11 The license
requests researchers to give reference to the initiative in
work derived from the original code and, more impor-
tantly, in scientific results obtained with the software.
The website also provides references to material rel-
evant to neuronal network simulations in general and
is meant to become a scientific resource of network
simulation information. Support is provided through
the NEST website and a mailing list. At present NEST
is used in teaching at international summer schools and
in regular courses at the University of Freiburg.

4.3.2 The NEST simulation tool

In the following we give a brief overview of the NEST
simulation tool and its capabilities.

4.3.2.1 Domain and design goals The domain of
NEST is large neuronal networks with biologically
realistic connectivity. The software easily copes with
the threshold network size of 105 neurons (Morrison
et al. 2005) at which each neuron can be supplied with
the natural number of synapses and simultaneously a
realistic sparse connectivity can be maintained. Typical
neuron models in NEST have one or a small number of
compartments. The simulator supports heterogeneity
in neuron and synapse types. In networks of realistic
connectivity the memory consumption and work load
is dominated by the number of synapses. Therefore,

11http://www.nest-initiative.org

http://www.neuroml.org
http://sourceforge.net/projects/genesis-sim
http://www.nest-initiative.org
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much emphasis is placed on the efficient representation
and update of synapses. In many applications network
construction has the same computational costs as the
integration of the dynamics. Consequently, NEST par-
allelizes both. NEST is designed to guarantee strict
reproducibility: the same network is required to gen-
erate the same results independent of the number of
machines participating in the simulation. It is consid-
ered an important principle of the project that the
development work is carried out by neuroscientists op-
erating on a joint code base. No developments are made
without the code being directly tested in neuroscien-
tific research projects. This implements an incremental
and iterative development cycle. Extensibility and long-
term maintainability are explicit design goals.

4.3.2.2 Infrastructure The primary user interface is
a simulation language interpreter which processes a
rather high level expressive language with an extremely
simple syntax which incorporates heterogeneous ar-
rays, dictionaries, and pure (i.e. unnamed) functions
and is thus suited for interactive work. There is no
built-in graphical user interface as it would not be
particularly helpful in NEST’s domain: network spec-
ification is procedural, and data analysis is generally
performed off-line for reasons of convenience and ef-
ficiency. The simulation language is used for data pre-
and post-processing, specification of parameters, and
for the compact description of the network structure
and the protocol of the virtual experiment. The neuron
models and synapse types are not expressed in the
simulation language as this would result in a slower
performance. They are implemented as derived classes
on the C++ level such that all models provide the same
minimal functionality and are thus easily interchange-
able on the simulation language level. A mechanism
for error handling propagates errors messages through
all levels of the software. Connections between nodes
(i.e. neurons, generators and recording devices) are
checked for consistency at the time of creation. User
level documentation is provided in a browsable for-
mat (the “helpdesk”) and is generated directly from
source code.

The code of NEST is modularized to facilitate the
development of new neuron models that can be loaded
at run time and to decouple the development of ex-
tensions from a specific NEST release. In the frame-
work of the FACETS project a Python interface and a
“facetsmodule” has been created. In addition to provid-
ing an interface between user-defined modules and the
core code, NEST can interface with other software - for
example, in order to provide a graphical user interface.
The primary strategy used is interpreter-interpreter

interaction, whereby each interpreter emits code that
the other interpreter accepts as its native language. This
approach minimizes the need to define protocols and
the dependency of NEST on foreign libraries.

4.3.2.3 Kernel There is a common perception that
event-driven algorithms are exact and time-driven algo-
rithms are approximate. We have recently shown that
both parts of this perception are generally false; it de-
pends on the dynamics of the neuron model whether an
event-driven algorithm can find an exact solution, just
as it does for time-driven algorithms (Morrison et al.
2007a). NEST is designed for large scale simulations
where performance is a critical issue. We have there-
fore argued that when comparing different integration
strategies, one should evaluate the efficiency, i.e. the
simulation time required to achieve a given integration
error, rather than the plain simulation time (Morrison
et al. 2007a). This philosophy is reflected in the simu-
lation kernel of NEST. Although it implements a glob-
ally time-driven algorithm with respect to the ordering
of neuron updates and the delivery of events, spike
times are not necessarily constrained to the discrete
time grid. Neuron implementations treating incoming
and outgoing spikes in continuous time are seamlessly
integrated into the time-driven infrastructure with no
need for a central event queue. This permits a great
flexibility in the range of neuron models which can
be represented, including exactly solvable continuous
time neuron models, models requiring approximation
techniques to locate threshold passing and models with
grid-constrained dynamics and spike times.

The simulation kernel of NEST supports paralleliza-
tion by multi-threading and message passing, which
allows distribution of a simulation over multiple proces-
sors of an SMP machine or over multiple machines in
a cluster. Communication overhead is minimized by
only communicating in intervals of the minimum prop-
agation delay between neurons, and communication
bulk is minimized by storing synapses on the machine
where the post-synaptic neuron is located (Morrison
et al. 2005). This results in supra-linear speed-up in
distributed simulations; scaling in multi-threaded sim-
ulations is reasonable, but more research is required to
understand and overcome present constraints. The user
only needs to provide a serial script, as the distribution
is performed automatically. Interactive usage of the
simulator is presently only possible in purely multi-
threaded operation. Reproducibility of results indepen-
dent of the number of machines/processors is achieved
by dividing a simulation task into a fixed number of ab-
stract (virtual) processes which are distributed amongst
the actual machines used (Morrison et al. 2005).
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4.3.3 Performance

The supplementary material contains simulation scripts
for all of the benchmarks specified in Appendix B.
Considering the domain of NEST, the benchmarks can
only demonstrate NEST’s capabilities in a limited way.
Therefore, a fifth benchmark is included which is not
only significantly larger than the other benchmarks
(three times as many neurons and forty times as many
synapses), but also incorporates spike-timing depen-
dent plasticity in its excitatory-excitatory synapses. The
neuron model for this benchmark is the same as for
Benchmark 2. All the benchmarks were simulated on
a Sun Fire V40z equipped with four dual core AMD
Opteron 875 processors at 2.2 GHz and 32 Gbytes
RAM running Ubuntu 6.06.1 LTS with kernel 2.6.15-
26-amd64-server. Simulation jobs were bound to spe-
cific cores using the taskset command. The simulations
were performed with a synaptic propagation delay of
0.1 ms and a computation time step of 0.1 ms unless
otherwise stated.

Figure 10(a) shows the simulation time for one bio-
logical second of Benchmarks 1 − 3. To compare the
benchmarks fairly despite their different firing rates,
the spiking was suppressed in all three benchmarks by
removing the initial stimulus, and in the case of Bench-
mark 2, the intrinsic firing was suppressed by setting
the resting potential to be lower than the threshold.
For networks of IF neuons of this size and activity,
the delivery of spikes does not contribute significantly
to the simulation times, which are dominated by the
neuron updates. If the spiking is not suppressed, the
simulation times for Benchmarks 1 and 2 are less than
10% longer. The simulation time for Benchmark 3 is
about 15% longer because of the computational cost
associated with the integration of the action potential.
Benchmark 2 (CUBA IF neuron model) is significantly
faster than the other two as its linear subthreshold
dynamics permits the use of exact integration tech-
niques (see Rotter and Diesmann 1999). The non-linear
dynamics of the conductance based IF neuron model
in Benchmark 1 and the HH neuron in benchmark 3
are propagated by one global computation time step
by one or more function calls to the standard adaptive
time stepping method of the GNU Scientific Library
(GSL; Galassi et al. 2001) with a required accuracy of
1 μV . The ODE-solver used is the embedded Runge–
Kutta–Fehlberg (4, 5) provided by the GSL, but this
is not a constraint of NEST - a neuron model may
employ any method for propagating its dynamics. In
a distributed simulation, processes must communicate
in intervals of the minimum synaptic delay in order to
preserve causality (Morrison et al. 2005). It is therefore
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Fig. 10 Performance of NEST on Benchmarks 1-4 and an ad-
ditional benchmark (5) with STDP. (a) Simulation time for one
biological second of Benchmarks 1-3 distributed over two proces-
sors, spiking supressed, with a synaptic delay of 0.1 ms. The hori-
zontal lines indicate the simulation times for the benchmarks with
the synaptic delay increased to 1.5 ms. (b) Simulation time for one
biological second of Benchmark 4 as a function of the minimum
synaptic delay in double logarithmic representation. The gray
line indicates a linear fit to the data (slope−0.8). (c) Simulation
time for one biological second of Benchmark 5, a network of
11250 neurons and connection probability of 0.1 (total number of
synapses: 12.7 × 106) as a function of the number of processors
in double logarithmic representation. All synapses static, trian-
gles; excitatory-excitatory synapses implementing multiplicative
STDP with an all-to-all spike pairing scheme, circles. The gray
line indicates a linear speed-up

more efficient to simulate with realistic synaptic delays
than with unrealistically short delays, as can be seen
in Fig. 10(a). The simulation times for the benchmark
networks incorporating a synaptic delay of 1.5 ms are in
all cases significantly shorter than the simulation times
for the networks if the synaptic delay is assumed to
be 0.1 ms.

Benchmark 4 (IF neuron model with voltage jump
synapses) is ideal for an event-driven simulation, as
all spike times can be calculated analytically - they
occur either when an excitatory spike is received, or
due to the relaxation of the membrane potential to
the resting potential, which is above the threshold.
Therefore the size of the time steps in which NEST
updates the neuron dynamics plays no role in deter-
mining the accuracy of the simulation. The primary
constraint on the step size is that it must be less than
or equal to the minimum synaptic delay between the
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neurons in the network. Fig. 10(b) shows the simulation
time for one biological second of Benchmark 4 on two
processors as a function of the minimum synaptic delay.
Clearly, the simulation time is strongly dependent on
the minimum delay in this system. At a realistic value of
1 ms, the network simulation is approximately a factor
of 1.3 slower than real time; at a delay of 0.125 ms the
simulation is approximately 7.3 times slower than real
time. In the case of neuron models where the synaptic
time course is not invertible, the computational time
step determines the accuracy of the calculation of the
threshold crossing. For a discussion of this case and the
relevant quantitative benchmarks, see Morrison et al.
(2007a).

Figure 10(c) shows the scaling of an application
which lies in the domain of neural systems for which
NEST is primarily designed. The simulated network
contains 11250 neurons, of which 9000 are excitatory
and 2250 inhibitory. Each neuron receives 900 inputs
randomly chosen from the population of excitatory
neurons and 225 inputs randomly chosen from the
inhibitory population. The scaling is shown for the
case that all the synapses are static, and for the case
that the excitatory-excitatory synapses implement mul-
tiplicative spike-timing dependent plasticity with an all-
to-all spike pairing scheme (Rubin et al. 2001). For
implementation details of the STDP, see Morrison et al.
(2007b), for further network parameters, see the sup-
plementary material. The network activity is in the
asynchronous irregular regime at 10 Hz. Both applica-
tions scale supra-linearly due to the exploitation of fast
cache memory. When using eight processors, the static
network is a factor of 6.5 slower than real time and the
plastic network is a factor of 14 slower. Compared to
Benchmark 2, the network contains 3 times as many
neurons, 40 times as many synapses and the firing rate
is increased by a factor of 2. However, using the same
number of processors (2), the static network simulation
is only a factor of 17 slower, and the plastic network
simulation is only a factor of 32 slower. This demon-
strates that NEST is capable of simulating large, high-
connectivity networks with computationally expensive
synaptic dynamics with a speed suitable for interactive
work. Although for this network the presence of the
STDP synapses increases the simulation time by a fac-
tor of two, this factor generally depends on the number
of synapses and the activity.

4.3.4 Perspectives

Future work on NEST will focus on an interac-
tive mode for distributed computing, an improvement
of performance with respect to modern multi-core

computer clusters, and a rigorous test and validation
suite. Further information on NEST and the current
release can be found at the NEST web site.12

4.4 NeoCortical simulator

The NeoCortical Simulator (NCS), as its name sug-
gests, is optimized to model the horizontally dispersed,
vertically layered distribution of neurons characteris-
tic of the mammalian neocortex. NCS development
began in 1997, a time at which fascinating details of
synaptic plasticity and connectivity were being discov-
ered (Markram et al. 1997a,b) yet available simula-
tors such as GENESIS and NEURON did not offer
parallel architectures nor the degree of neuronal com-
partmental simplification required for reasonable per-
formance times. Also emerging at the time were
inexpensive clusters-of-workstations, also known as
Beowulf clusters, operating under the LINUX operat-
ing system. Following a 1997 neuroscience fellowship
with Rodney Douglas and Kevan Martin at the Institute
for Neuroinformatics in Zürich, Philip Goodman pro-
grammed the first NCS using Matlab in collaboration
with Henry Markram (then at the Weizmann Institute,
now at the Swiss EPFL) and Thomas McKenna, Neural
Computation Program Officer at the U.S. Office of
Naval Research. Preliminary results led to ONR fund-
ing (award N000140010420) in 1999, which facilitated
the subsequent collaboration with UNR computer sci-
entists Sushil Louis and Frederick Harris, Jr. This led
to a C++ implementation of NCS using LINUX MPI
on a Beowulf cluster. NCS was first made available
to outside investigators beginning in 2000, with further
development targeting the following specifications:

1. Compartments: sampling frequency and membrane
compartmental realism sufficient to capture bio-
logical response properties, arbitrary voltage- and
ion-sensitive channel behaviors, and multicompart-
mental models distributed in 3-D (dendritic, so-
matic, and axonal systems)

2. Synapses: short-term depression and facilitation
(Markram et al. 1998a), augmentation (Wang et al.
2006) and Hebbian spike-timing dependent plastic-
ity (Markram et al. 1997b)

3. 3-D Connectionism: a layout to easily allocate neu-
rons into subnetwork groupings, layers, column,
and sheets separated by real micron- or millimeter
spacings, with realistic propagation distances and
axonal conduction speeds

12http://www.nest-initiative.org

http://www.nest-initiative.org
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(a) (b)

Fig. 11 NCS file specifications and example of simulation. (a)
Hierarchy of the NCS Command File Objects. The file is ASCII-
based with simple object delimiters. Brainlab scripting tools are

available for repetitive structures (Drewes 2005). (b) 1-s spike
rastergram of 100 arbitrarily selected neurons in the benchmark
simulation

4. Parallelism: an inherently parallel, efficient method
of passing messages of synaptic events among
neurons

5. Reporting: an efficient way to collect, sample
and analyze selected compartmental and neuronal
behaviors

6. Stimulation: ability to (a) specify fixed, standard
neurophysiological stimulation protocols, (b) port
signals from an external device, and (c) export neu-
ronal responses and await subsequent replies from
external systems (e.g., dynamic clamps, in vitro or
in vivo preparations, robotic emulations)

7. Freeze/resume system state: the ability to stop a
simulation and hibernate all hardware and software
parameters into a binary blob, for unpacking and
resuming in later experiments

8. Command files: simplicity in generating and modi-
fying scripts

As of 2005, NCS developers achieved all the ob-
jectives above, using an ASCII file based command
input file to define a hierarchy of reusable brain objects
(Fig. 11(a)). NCS uses clock-based IF neurons whose
compartments contain COBA synaptic dynamics and
Hodgkin–Huxley formulations of ionic channel gating
particles.13 Although a user-specified active spike tem-

13http://brain.unr.edu/publications/thesis.ecw01.pdf

plate is usually used for our large simulations, HH
channel equations can be specified for the rapid sodium
and delayed rectifier spike behavior. No nonlinear sim-
plifications, such as the Izhikevich formulation, are sup-
ported. Compartments are allocated in 3-D space, and
are connected by forward and reverse conductances
without detailed cable equations. Synapses are COBA,
with phenomenological modeling of depression, facili-
tation, augmentation, and STDP.

NCS runs on any LINUX cluster. We run NCS on
our 200-CPU hybrid of Pentium and AMD processors,
and also on the 8,000-CPU Swiss EPFL IBM Blue
Brain. NCS can run in single-PC mode under LINUX
or LINUX emulation (e.g., Cygwin) and on the new
Pentium-based Macintosh.

Although NCS was motivated by the need to model
the complexity of the neocortex and hippocampus, lim-
bic and other structures can be modeled by variably col-
lapsing layers and specifying the relevant 3-D layouts.
Large-scale models often require repetitive patterns
of interconnecting brain objects, which can be tedious
using only the basic ASCII command file. We therefore
developed a suite of efficient Python-based scripting
tools called Brainlab (Drewes 2005). An Internet-based
library and control system was also developed (Waikul
et al. 2002).

NCS delivers reports on any fraction of neuronal
cell groups, at any specified interval. Reports in-
clude membrane voltage (current clamp mode), current

http://brain.unr.edu/publications/thesis.ecw01.pdf
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(voltage clamp), spike-event-only timings (event-
triggered), calcium concentrations, synaptic dynamics
parameter states, and any HH channel parameter. Al-
though NCS does not provide any direct visualization
software, report files are straightforward to view in any
graphics environment. Two such Matlab-based tools
are available for download from the lab’s web site.14

Benchmark. We ran the Vogels and Abbott (2005)
benchmark under the conditions specified for the
COBA IF model (see Benchmark 1 in Appendix B),
and obtained the expected irregularly-bursting sus-
tained pattern (first second shown in Fig. 11(b)). At
the default 10:1 ratio of inhibitory to excitatory synaptic
conductances, the overall mean firing rate was 15.9 Hz.

The largest simulations to-date have been on the
order of a million single-compartment neurons using
membrane AHP, M, A-type channels. Neurons were
connected by 1 trillion synapses using short-term and
STDP dynamics; this required about 30 min on 120
CPUs to simulate one biological second (Ripplinger
et al. 2004). Intermediate-complexity simulations have
examined multimodal sensory integration and informa-
tion transfer,15 and genetic algorithm search for para-
meter sets which support learning of visual patterns
(Drewes et al. 2004). Detailed work included evalu-
ation of interneuronal membrane channels (Maciokas
et al. 2005) underlying the spectrum of observed firing
behaviors (Gupta et al. 2000), and potential roles in
speech recognition (Blake and Goodman 2002) and
neuropathology (Kellogg et al. 1999; Wills et al. 1999;
Wiebers et al. 2000; Opitz and Goodman 2005). Re-
cent developments focus on IP port-based real time
input-output of the “brain” to remotely behaving and
learning robots.16 The UNR Brain Computation Lab-
oratory is presenting collaborating with the Brain
Mind Institute of the Swiss EPFL. Their 8,000-CPU
Blue Brain cluster17 currently runs NCS alone or
as in a hybrid configuration as an efficient synap-
tic messaging system with CPU-resident instances of
NEURON. The Reno and Swiss teams are exploring
ways to better calibrate simulated to living micro-
circuits, and to effect real-time robotic behaviors. Un-
der continuing ONR support, the investigators and
two graduate students provide part-time assistance to

14http://brain.unr.edu/publications/neuroplot.m; http://brain.unr.
edu/publications/EVALCELLTRACINGS.zip
15http://brain.unr.edu/publications/Maciokas_Dissertation_final.
zip
16http://brain.unr.edu/publications/jcm.hierarch_robotics.unr_ms
_thesis03.pdf; http://brain.unr.edu/publications/JGKingThesis.pdf
(Macera-Rios et al. 2004)
17http://bluebrainproject.epfl.ch

external users at no cost through e-mail and online
documentation. User manual and programmer specifi-
cations with examples are available.18

4.5 Circuit simulator

4.5.1 Feature overview

The circuit simulator (CSIM) is a tool for simulating
heterogeneous networks composed of (spike emitting)
point neurons. CSIM is intended to simulate networks
containing a few neurons, up to networks with a few
thousand neurons and on the order of 100000 synapses.
It was written to do modeling at the network level in
order to analyze the computational effects which can
not be observed at the single cell level. To study single
cell computations in detail we give the advice to use
simulators like GENESIS or NEURON.

Easy to use Matlab interface : The core of CSIM is writ-
ten in C++ which is controlled by means of Matlab
(there is no standalone version of CSIM). We have
chosen Matlab since it provides very powerful graphics
and analysis capabilities and is a widely used program-
ming language in the scientific community. Hence it is
not necessary to learn yet another script language to
set up and run simulations with CSIM. Furthermore
the results of a simulation are directly returned as
Matlab arrays and hence any plotting and analysis tools
available in Matlab can easily be applied.

Until now CSIM does not provide a GUI. However
one can easily use Matlab powerful GUI builder to
make a GUI for a specific application based on CSIM.

Object oriented design : We adopted an object oriented
design for CSIM which is similar to the approaches
taken in GENESIS and NEURON. That is there are
objects (e.g. a LifNeuron object implements the stan-
dard LIF model) which are interconnected by means
of well defined signal channels. The creation of objects,
the connection of objects and the setting of parame-
ters of the objects is controlled at the level of Matlab
whereas the actual simulation is done in the C++ core.

Fast C++ core : Since CSIM is implemented in C++
and is not as general as e.g. GENESIS simulations
are performed quite fast. We also implemented some
ideas from event driven simulators which result in a
considerable speedup (up to a factor of three for low

18http://brain.unr.edu/ncsDocs

http://brain.unr.edu/publications/neuroplot.m; http://brain.unr.edu/publications/EVALCELLTRACINGS.zip
http://brain.unr.edu/publications/neuroplot.m; http://brain.unr.edu/publications/EVALCELLTRACINGS.zip
http://brain.unr.edu/publications/Maciokas_Dissertation_final.zip
http://brain.unr.edu/publications/Maciokas_Dissertation_final.zip
http://brain.unr.edu/publications/jcm.hierarch_robotics.unr_ms_thesis03.pdf
http://brain.unr.edu/publications/jcm.hierarch_robotics.unr_ms_thesis03.pdf
http://brain.unr.edu/publications/JGKingThesis.pdf
http://bluebrainproject.epfl.ch
http://brain.unr.edu/ncsDocs
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firing rates; see the subsection about implementation
aspects below).

Runs on Windows and Linux (Unix) : CSIM is devel-
oped on Linux (Matlab 6.5 and 7.2, gcc 4.0.2). From the
site www.lsm.tugraz.at/csm precompiled versions
for Linux and Windows are available. Since CSIM is
pure C++ it should not be hard to port it to other
platforms for which Matlab is available.

Different levels of modeling : By providing different
neuron models CSIM allows to investigate networks
at different levels of abstraction: sigmoidal neurons
with analog output, linear and non-linear LIF neurons
and compartmental based (point) neurons with
spiking output. A broad range of synaptic models
is also available for both spiking and non-spiking
neuron models: starting from simple static synapses
ranging over synapses with short-term plasticity to
synapse models which implement different models for
long-term plasticity.

4.5.2 Built-in models

Neuron models : CSIM provides two different classes
of neurons: neurons with analog output and neurons
with spiking output. Neurons with analog output are
useful for analyzing population responses in larger cir-
cuits. For example CSIM provides a sigmoidal neuron
with leaky integration. However, there are much more
different objects available to build models of spiking
neurons:

• Standard (linear) LIF neurons
• Non-linear LIF neurons based on the models of

Izhikevich
• Conductance based point neurons with and without

a spike template. There are general conductance
based neurons where the user can insert any num-
ber of available ion-channel models to build the
neuron model. On the other hand there is a rich
set of predefined point neurons available used in
several studies.

Spiking synapses : As for the neurons CSIM also im-
plements synapses which transmit analog values and
spike transmitting synapses. Two types of synapses are
implemented: static and dynamic synapses. While for
static synapses the amplitude of each postsynaptic re-
sponse (current of conductance change) is the same,
the amplitude of an postsynaptic response in the case
of a dynamic synapse depends on the spike train that
it has seen so far, i.e. dynamic synapses implement a

form of short term plasticity (depression, facilitation).
For synapses transmitting spikes the time course of a
postsynaptic response is modeled by A × exp(−t/τsyn),
where τsyn is the synaptic time constant and A is the
synaptic strength which is constant for static synapses
and given by the model described in Markram et al.
(1998b) for dynamic synapses.

Note that static as well as dynamic synapses are
available as current supplying or conductance based
models.

Analog synapses : For synapses transmitting analog
values, such as the output of a sigmoidal neuron, static
synapses are simply defined by their strength (weight),
whereas for dynamic synapses we implemented a con-
tinuous version of the dynamic synapse model for spik-
ing neurons (Tsodyks et al. 1998).

Synaptic plasticity : CSIM also supports spike time de-
pendent plasticity, STDP, applying a similar model as in
Song et al. (2000). STDP can be modeled most easily by
making the assumption that each pre- and postsynaptic
spike pair contributes to synaptic modification indepen-
dently and in a similar manner. Depending on the time
difference �t = tpre − tpost between pre- and postsynap-
tic spike the absolute synaptic strength is changed by an
amount L(�t). The typical shape for the function L(�t)
as found for synapses in neocortex layer 5 (Markram
et al. 1997a,b) is implemented. Synaptic strengthening
and weakening are subject to constraints so that the
synaptic strength does not go below zero or above a
certain maximum value. Furthermore additional vari-
ants as suggested in Froemke and Dan (2002) and Gütig
et al. (2003) are also implemented.

4.5.3 Implementation aspects

Network input and output : There are two forms of in-
puts which can be supplied to the simulated neural
microcircuit: spike trains and analog signals. To record
the output of the simulated model special objects called
Recorder are used. A recorder can be connected to any
object to record any field of that object.

Simulation Strategy : CSIM employees a clock based
simulation strategy with a fixed simulation step width
dt. Typically the exponential Euler integration method
is used. A spike which occurs during a simulation
time step is assumed to occur at the end of that time
step. That implies that spikes can only occur at multi-
ples of dt.
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Efficient processing of spikes : In a typical simulation
of a neural circuit based on simple neuron models
the CPU time spent in advancing all the synapses
may by larger then the time needed to integrate the
neuron equations. However if one considers the fact
that synapses are actually “idle” most of the time (at
least in low firing rate scenarios) it makes sense to
update during one time step only those synapses whose
postsynaptic response is not zero, i.e. are active. CSIM
implements this idea by dividing synapses into a list of
idle and a list of active synapses where only the latter
is updated during a simulation time step. A synapse
becomes active (i.e. is moved from the idle list to the
active list) if a spike arrives. After its postsynaptic
response has vanished the synapse becomes idle again
(i.e. is moved back from the active list to the idle list).
This trick can result in considerable speed up for low
firing rate scenarios.

4.5.4 Further information

CSIM ins distributed under the GNU General Public
License and is available for download.19 Support for
CSIM (and its related tools) can be obtained by writing
email to lsm@igi.tu-graz.ac.at.

At the site http://www.lsm.tugraz.at one can
find besides the download area for CSIM (including the
user manual and an object reference manual) a list of
publications which used CSIM (and its related tools)
and also the code of published models.

Related tools : Furthermore the site http://www.
lsm.tugraz.at provides two sets of Matlab scripts
and objects which heavily build on CSIM. The circuit
tool supports the construction of multi-column circuits
by providing functionality to connect pools of neurons
to pools of neurons. The learning tool was developed
to analyze neural circuits in the spirit of the liquid
state machine (LSM) approach Maass et al. 2002 and
therefore contains several machine learning methods
(see Natschläger et al. 2003, for more information about
this tools).

As of this writing resources are devoted to develop
a parallel version of CSIM called PCSIM which allows
distributed simulation of large scale networks. PCSIM
will have a python interface which allows an easy
implementation of the upcoming PyNN application
programming interface (see Appendix A). The current

19http://www.lsm.tugraz.at/csim

development version of PCSIM can be obtained from
the SourceForge site.20

4.5.5 CSIM implementations of the benchmark
simulations

We implemented the benchmark networks 1 to 3 as
specified in Appendix B.

The IF benchmark networks (Benchmark 1 and 2)
are well suited to be simulated with CSIM and can be
implemented by only using built-in objects: CbNeuron
and StaticSpikingCbSynapse as the neuron and synapse
model for the COBA network and LifNeuron and Stat-
icSpikingSynapse as neuron and synapse model for the
CUBA network.

To implement Benchmark 3 (HH network) it is
necessary to add the desired channel dynamics to
CSIM by implementing it at the C++ level. The
user defined neuron model (TraubsHHNeuron) is
easily implemented in C++ (see the files traubs_
hh_channels.[cpp|h] and TraubsHHNeuron.
[cpp|h]). After these files are compiled and linked to
CSIM they are available for use in the simulation. We
refer the user to the CSIM manual for details on how to
add user defined models at C++ level to CSIM.

For each benchmark network we provide two im-
plementations: the first implementation uses the plain
CSIM interface only while the second implementation
makes use of the circuit tool mentioned in the previous
subsection (filename suffix *_circuit.m).

To provide the initial stimulation during the first
50 ms of the simulation we set up a pool of input
neurons (SpikingInputNeuron objects) which provide
random spikes to the network.

Results of CSIM simulations of all implemented
benchmarks are depicted in Fig. 12. This figures were
produced by the simulation scripts provided for each
benchmark using Matlab’s powerful graphics capabili-
ties (see the file make_figures.m) and illustrate the
sustained irregular activity described by Vogels and
Abbott (2005) for such networks.

The current development version of PCSIM has
been used to perform scalability tests based on the
CUBA benchmark (Benchmark 2). The results are
summarized in Fig. 13. For the small 4000 neuron net-
work the speedup for more than four machines vanishes
while for the larger networks a more than expected
speedup occurs up to six machines. This shows that
PCSIM is scalable with regard to the problem size and

20http://sourceforge.net/projects/pcsim

http://www.lsm.tugraz.at/csim
http://sourceforge.net/projects/pcsim
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Fig. 12 Results of CSIM simulations of the Benchmarks 1 to 3
(top to bottom). The left panels show the voltage traces (in mV) of
a selected neuron. For Benchmark 1 (COBA) and Benchmark 2

(CUBA) models (top two rows), the spikes superimposed as
vertical lines. The right panels show the spike raster for randomly
selected neurons for each of the three benchmarks

the number of available machines. The development
version of PCSIM together with the python script
for the CUBA benchmark can be obtained from the
SourceForge site.21

4.6 XPPAUT

XPPAUT is a general numerical tool for simulating,
animating, and analyzing dynamical systems. These can
range from discrete finite state models (McCulloch–
Pitts) to stochastic Markov models, to discretization
of partial differential and integrodifferential equations.
XPPAUT was not specifically developed for neural
simulations but because of its ability to provide a com-
plete numerical analysis of the dependence of solutions
on parameters (“bifurcation diagrams”) it is widely
used by the community of computational and theoret-
ical neuroscientists. There are many online tutorials
many of which are geared to neuroscience. While it
can be used for modest sized networks, it is not specif-
ically designed for this purpose and due to its history,
there are limits on the size of problems which can be
solved (about 2000 differential equations is the current
limit). The benchmarks were not performed due to

21http://sourceforge.net/projects/pcsim
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Fig. 13 Performance of PCSIM. The time needed to simulate
the Benchmark 2 (CUBA) network (1 ms synaptic delay, 0.1 ms
time step) for 1 s of biological time (solid line) as well as the
expected times (dashed line) are plotted against the number
of machines (Intel Xeon, 3.4 Ghz, 2 Mb cache). The CUBA
model was simulated for three different sizes: 4000 neurons and
3.2 × 105 synapses (stars), 10000 neurons and 2 × 106 synapses
(circles), and 20000 neurons and 20 × 106 synapses (diamonds)

http://sourceforge.net/projects/pcsim
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Fig. 14 XPPAUT interface
for a network of 200
excitatory and 50 inhibitory
HH neurons with random
connectivity, COBA
dynamical synapses. Each
neuron is also given a random
drive. Main window, a
three-dimensional phase plot,
and an array plot are shown

this limitation in size, however, a reduced version is
included. Rather than a pure simulator, XPPAUT is
a tool for understanding the equations and the results
of simulating the equations. XPPAUT uses a highly
optimized parser to produce a pseudocode which is in-
terpreted and runs very fast – at about half the speed of
directly compiled code. Since no compiler is required,
XPPAUT is a stand alone program and runs on all
platforms which have an X-windows interface available
(UNIX, MAC OSX, Windows, etc.) The program is

open source and available as source and various binary
versions.

XPPAUT can be run interactively (the preferred
method) but can also be run in batch mode with no GUI
with the results dumped to one or more files. The GUI
is shown in Fig. 14. Graphical output in postscript, GIF,
PBM, and animated GIF is possible. (There are codecs
available for AVI format but these are not generally
included in the compiled versions.) Numerous pack-
ages for controlling XPPAUT have been written, some

Fig. 15 Persistent state in an
IF network with 400
excitatory and 100 inhibitory
cell. XPPAUT simulation
with exponential COBA
synapses, sparse coupling and
random drive. Excitatory
and inhibitory synapses are
shown as well as voltages
traces from 3 neurons
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stand-alone such as JigCell and others using Matlab or
PERL. Data from simulations can be saved for other
types of analysis and or plotting with other packages.
The “state” of the program can be saved as well so that
users can come back where they let off.

There are no limits as far as the form of the equations
is concerned since the actual equations that you desire
to solve are written down like you would write them in
a paper. For example the voltage equation for a COBA
model would be written as:

dv/dt = (-gl*(v-el) - gna*m^3*h*(v-ena)
-gk*n^4*(v-ek))/cm

There is a method for writing indexed networks as
well, so that one does not have to write every equa-
tion. Special operators exist for speeding up network
functions like discrete convolutions and implementa-
tion of the stochastic Gillespie algorithm. Furthermore,
the user can link the right-hand sides of differential
equations to external C libraries to solve complex equa-
tions [for example, equation-free firing rate models,
(Laing 2006)]. Because it is a general purpose solver,
the user can mix different types of equations for ex-
ample stochastic discrete time events with continuous
ODEs. Event driven simulations are also possible and
can be performed in such as way that output occurs
only when an event happens. There are many ways to
display the results of simulations including color-coded
plots showing space-time behavior, a built-in animation
language, and one- two- and three-dimensional phase-
space plots (see Figs. 14 and 15).

XPPAUT provides a variety of numerical meth-
ods for solving differential equations, stochastic sys-
tems, delay equations, Volterra integral equations, and
boundary-value problems (BVP). The numerical in-
tegrators are very robust and vary from the simple
Euler method to the standard method for solving stiff
differential equations, CVODE. The latter allows the
user to specify whether the system is banded and thus
can improve calculation speed by up to two orders of
magnitude. The use of BVP solvers is rare in neuro-
science applications but they can be used to solve, for
example, the steady-state behavior of Fokker–Planck
equations for noisy neurons and to find the speed of
traveling waves in spatially distributed models.

Tools for analysis dynamical properties such as
equilibria, basins of attraction, Lyapunov exponents,
Poincare maps, embedding, and temporal averaging
are all available via menus. Some statistical analysis of
simulations is possible such as power spectra, mean and
variance, correlation analysis and histograms are also

included in the package. There is a very robust para-
meter fitting algorithm (Marquardt–Levenburg) which
allows the user to find parameters and initial conditions
which best approximate specified data.

One part of XPPAUT which makes it very popular is
the inclusion of the continuation package, AUTO. This
package allows the user to track equilibria, limit cycles,
and solutions to boundary-value problems as parame-
ters vary. The stability of the solutions is irrelevant so
that users can track the entire qualitative behavior of
a differential equation. XPPAUT provides a simple to
use GUI for AUTO which allows the user to seam-
lessly switch back and forth between simulation and
analysis.

XPPAUT is used in many different courses and
workshops including the Methods in Computational
Neuroscience course at the Marine Biological Labo-
ratory (where it was developed 15 years ago), various
European CNS courses as well as in classroom settings.
Since equations are written for the software as you
would write them on paper, it is easy to teach students
how to use XPPAUT for their own problems. There
are many features for the qualitative analysis of dif-
ferential equations such as direction fields, nullclines
and color coding of solutions by some property (such
as energy or speed).

XPPAUT can be considered a stable mature pack-
age. It is developed and maintained by the author.
While a list of users is not maintained, a recent Google
search revealed 38500 hits and a search on Google
Scholar showed over 250 papers citing the software. In
the future, the parser will be rewritten so that there will
be no limit to the number of equations and methods
for implementing large spatially distributed systems
will also be incorporated. Parts of the analysis code in
XPPAUT may possibly be included in NEURON in
the near future. A book has been written on the use
of the program (Ermentrout 2004); and it comes with
120 pages of documentation and dozens of examples.

4.7 SPLIT

4.7.1 Parallel simulators

The development of parallel simulation in computa-
tional neuroscience has been relatively slow. Today
there are a few publicly available parallel simula-
tors, but they are far from as general, flexible, and
documented as commonly used serial simulators such
as Neuron (Hines and Carnevale 1997) and Genesis
(Bower and Beeman 1998). For Genesis there is PGE-
NESIS and the development of a parallel version of
Neuron has started. In addition there exists simulators
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Fig. 16 Speedup for model
with 4 million cells and 2
billion synapses simulated
with SPLIT on BG/L (from
Djurfeldt et al. 2005)
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like NCS22 (see Ermentrout 2004), NEST (Morrison
et al. 2005), and our own parallelizing simulator SPLIT
(Hammarlund and Ekeberg 1998). However, they are
in many ways still on the experimental and develop-
mental stage.

4.7.2 The simulator

SPLIT 23 is a tool specialized for efficiently simulat-
ing large-scale multicompartmental models based on
HH formalism. It should be regarded as experimental
software for demonstrating the possibility and useful-
ness of very large scale biophysically detailed neuronal
network simulations. Recently, this tool was used for
one of the largest cortex simulations ever performed
(Djurfeldt et al. 2005). It supports massive parallelism
on cluster computers using MPI. The model is specified
by a C++ program written by the SPLIT user. This pro-
gram is then linked with the SPLIT library to obtain the
simulator executable. Currently, there is no supported
graphical interface, although an experimental Java/QT-
based graphical interface has been developed. There
is no built-in support for analysis of results. Rather,
SPLIT should be regarded as a pure, generic, neural
simulation kernel with the user program adapting it

22http://brain.cse.unr.edu/ncsdocs
23http://sans.nada.kth.se/split

into a simulator specific to a certain model. Although
this approach is in some sense “raw”, this means that
the model specification benefits from the full power of
a general purpose programming language.

SPLIT provides COBA synaptic interactions with
short-term plasticity (facilitation and depression).
Long-term plasticity (such as STDP) and IF formal-
ism have not yet been implemented, although this is
planned for the future.

The user program specifies the model through the
SPLIT API which is provided by the class split. The
user program is serial and parallelism is hidden from
the user. The program can be linked with either a
serial or parallel version of SPLIT. In the parallel case,
some or all parts of the program run in a master node
on the cluster while SPLIT internally sets up parallel
execution on a set of slave nodes. As an option, parts
of the user program can execute distributed onto each
slave via a callback interface. However, SPLIT provides
a set of tools which ensures that also such distrib-
uted code can be written without explicit reference to
parallelism.

The SPLIT API provides methods to dynamically
inject spikes to an arbitrary subset of cells during a
simulation. Results of a simulation are logged to file.
Most state variables can be logged. This data can be
collected into one file at the master node or written
down at each slave node. In the latter case, a separate
program might be used to collect the files at each node
after the simulation terminates.

http://brain.cse.unr.edu/ncsdocs
http://sans.nada.kth.se/split
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4.7.3 Large scale simulations

Recently, Djurfeldt et al. (2005) have described an
effort to optimize SPLIT for the Blue Gene/L super-
computer. BG/L (Gara et al. 2005) represents a new
breed of cluster computers where the number of pro-
cessors, instead of the computational performance of
individual processors, is the key to higher total perfor-
mance. By using a lower clock frequency, the amount
of heat generated decreases dramatically. Therefore,
CPU chips can be mounted more densely and need less
cooling equipment. A node in the BG/L cluster is a
true “system on a chip” with two processor cores, 512
MiB of on chip memory and integrated network logic.
A BG/L system can contain up to 65536 processing
nodes.

During this work, simulations of a neuronal network
model of layers II/III of the neocortex were per-
formed using COBA multicompartmental model neu-
rons based on HH formalism. These simulations
comprised up to 22 million neurons and 11 billion
synapses. After a series of optimization steps, perfor-
mance measurements showed linear scaling behavior
both on the Blue Gene/L supercomputer (see Fig. 16)
and on a more conventional cluster computer. Opti-
mizations included parallelization of model setup and
domain decomposition of connectivity meta data. Com-
putation time was dominated by the synapses which
allows for a “free” increase of cell model complex-
ity. Furthermore, communication time was hidden by
computation.

4.7.4 Implementation aspects

SPLIT has so far been used to model neocortical net-
works (Fransén and Lansner 1998; Lundqvist et al.
2006), the Lamprey spinal cord (Kozlov et al. 2003,
2007) and, the olfactory cortex (Sandström et al. 2007).

The library exploits data locality for better cache-
based performance. In order to gain performance on
vector architectures, state variables are stored as se-
quences. It uses techniques such as adjacency lists
for compact representation of projections and Ad-
dress Event Representation (Bailey and Hammerstrom
1988) for efficient communication of spike events.

Perhaps the most interesting concept in SPLIT is its
asynchronous design: On a parallel architecture, each
slave process has its own simulation clock which runs
asynchronously with other slaves. Any pair of slaves
only need to communicate at intervals determined by
the smallest axonal delay in connections crossing from
one slave to the other.

The neurons in the model can be distributed arbi-
trarily over the set of slaves. This gives great freedom
in optimizing communication so that densely connected
neurons reside on the same CPU and so that axonal
delays between neurons simulated on different slaves
are maximized. The asynchronous design, where a slave
process does not need to communicate with all other
slaves at each time step, gives two benefits: (1) By com-
municating more seldom, the communication overhead
is reduced. (2) By allowing slave processes to run out of
phase, to a degree determined by the mutually smallest
axonal delay, the waiting time for communication is
decreased.

4.7.5 Benchmark

The SPLIT implementation of the HH benchmark
(Benchmark 3 in Appendix B) consists of a C++ pro-
gram which specifies what entities are to be part of
the simulation (cell populations, projections, noise-
generators, plots), makes a call which distributes these
objects onto the cluster slaves (in the parallel case),
sets the parameters of the simulation objects, initializes,
and simulates. While writing the code, close attention
needs to be payed to which parameters are scalar and
which are vectorized over the sets of cells or axons.
Channel equations are pre-compiled into the library,
and a choice of which set of equations to use needs to
be made. Parameters are specified using SI units.

The Benchmark 3 simulation (4000 cells, 5 s of simu-
lated time) took 386 s on a 2 GHz Pentium M machine
(Dell D810). Outputs are written in files on disk and
can easily be displayed using gnuplot. Figure 17 shows
a raster of spiking activity in 100 cells during the first
second of activity. Figure 18 shows membrane potential
traces of 3 of the cells during 5 s (left) and 100 ms
(right).

4.7.6 Future plans

Ongoing and possible future developments of SPLIT
include:

• A revision of the simulation kernel API
• The addition of a Python interpreter interface
• Compatibility with channel models used in popular

simulators such as Neuron and Genesis, enabling
easy transfer of neuron models

• Gap junctions
• Graded transmitter release
• Better documentation and examples
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Fig. 17 Raster plot
showing spikes of 100 cells
during the first second of
activity (SPLIT simulation
of Benchmark 3)
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Currently, SPLIT is developed, in part time, by two
people. There exists some limited documentation and
e-mail support.

4.8 Mvaspike

4.8.1 Modelling with events

It has been argued many times that action potentials as
produced by many types of neurones can be considered
as events: they consist of stereotypical impulses that
appear superimposed on the internal voltage dynamics
of the neurons. As a result, many models of neurons
offer ways of defining event times associated with each
emitted action potential, often through the definition
of a firing threshold.24 Neural simulation tools have
taken advantage of this for a long time, through the
use of event driven algorithms (see Section 2). Indeed,
when one speaks of events in the context of simulation
of neural networks, event-driven algorithms come to
mind and it is the authors’ impression that the use of
events upstream, during the modeling stage, is often
understated.

24The firing threshold here has to be taken in a very broad sense,
from a simple spike detection threshold in a continuous model
(e.g. HH) to an active threshold that is uses in the mathematical
expression of the dynamics (IF model).

Mvaspike was designed as an event-based modeling
and simulation framework. It is grounded on a well
established set-theoretic modeling approach [discrete
event system specification (DEVS) (Zeigler and Vahie
1993; Zeigler et al. 2000)]. Target models are discrete
events systems: their dynamics can be described by
changes of state variables at arbitrary moments in
time.25 One aspect of Mvaspike is to bridge the gap
between the more familiar expression of continuous
dynamics, generally in use in the neuroscience commu-
nity, and the event-centric use of models in the simu-
lator (see Fig. 19). This is conveniently easy for many
simple models that represent the models of choice in
Mvaspike (mostly IF or phase models, and SRMs).
Watts (1994) already noted that many neuronal proper-
ties can be explicitly and easily represented in discrete
event systems. Think of absolute refractory periods,
rising time of PSPs, axonal propagation delays, these are
notions directly related to time intervals (and therefore,
events) that are useful to describe many aspects of
the neuronal dynamics. This being obviously quite far
from the well established, more electro-physiologically
correct conductance based models, another aim of

25As opposed to discrete time systems, in which state changes
occurs periodically, and continuous systems where state changes
continuously.
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Fig. 18 Plots of the membrane potential for 3 of the 4000 cells. The right plot shows a subset of the data in the left plot, with higher
time resolution (SPLIT simulation of Benchmark 3)

Mvaspike is therefore to take into account as much as
possible of these more complex models, through the
explicit support of discrete-time events, and, possibly,
state space discretization for the integration of contin-
uous or hybrid dynamics.

The DEVS formalism makes also possible the mod-
eling of large, hierarchical or modular systems (e.g.
networks of coupled populations of neurons, or micro-
circuits, cortical columns etc.), through a well-defined
coupling and composition system. This helps model-
ing large and complex networks, but also favor code
reusability, prototyping, and the use of different levels
of modeling. Additional tools have been implemented
in Mvaspike to take into account e.g. synaptic or ax-
onal propagation delays, the description of structured
or randomly connected networks in an efficient way,
through the use of generic iterators to describe the
connectivity (Rochel and Martinez 2003).

4.8.2 The simulator

The core simulation engine in Mvaspike is event-
driven, meaning that it is aimed at simulating networks
of neurons where event-times can be computed effi-
ciently. Firing times will then be calculated exactly (in
fact, to the precision of the machine). This does not
mean however that it is restricted to models that offer
analytical expressions of the firing times, as numerical
approximations can be used in many situations.

Mvaspike consists of a core C++ library, implement-
ing a few generic classes to describe networks, neu-
rons and additional input/output systems. It has been
designed to be easy to access from other program-
ming languages (high level or scripting languages, e.g.
Python) and extensible. Well established simulation al-
gorithms are provided, based on state of the art priority
queue data structures. They have been found to be

Fig. 19 Neuronal dynamics from a discrete-event dynamical
systems perspective. Events (t1-t4), corresponding to the state
variable switching from the sub-threshold to the firing dynamics,
can occur at any arbitrary point in time. They correspond here

to change of the neuron output that can be passed to the rest of
the systems (e.g. other neurons). Internal changes (e.g. end of the
refractory period) can also be described in a similar way
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Fig. 20 Membrane potential
of a single neuron, from a
Mvaspike implementation
of Benchmark 4.
Top: membrane potential
dynamics (impulses have
been superimposed at firing
time to make them more
apparent). Bottom: Mvaspike
simulation result typically
consists of lists of events
(here, spiking and reception
time, top and middle panels)
and the corresponding state
variables at these instants
(not shown). In order to
obtain the full voltage
dynamics, a post-processing
stage is used to add new
intermediary values between
events (bottom trace)

sufficiently efficient on average; however, the object-
oriented approach has been designed to permit the use
of dedicated, optimized sub-simulators when possible.

On top of the core engine lies a library that includes
a few common models of neurons, including linear or
quadratic IF (or SRM) neurons, with Dirac synaptic
interactions, or various forms of piecewise linear and
exponential PSPs. Other available ingredients include
plasticity mechanisms (STDP), refractory periods, in-
put spike trains generation (Poisson). Some connectiv-
ity patterns (e.g. all-to-all, ring, etc.) are also included.

There is no graphical user interface, nor pre- and
post-processing tools included, as these are elements of
the modeling and simulation work-flow that we believe
to be easy to handle using third-party environments or
high level languages, tailored to the needs and habits of
the user.

4.8.3 Benchmarks

The simplest model available in Mvaspike corresponds
to the one defined for Benchmark 4 (see Appendix B).
A straightforward implementation of the correspond-
ing network can be done using only available objects
from the library.

The typical output of a Mvaspike simulation is a
list of events, corresponding e.g. to spikes emitted (or
received) by the neurons. In particular, the membrane
potential is not available directly. In order to obtain

the voltage trace presented in Fig. 20, a simple post-
processing stage was necessary in order to obtain val-
ues for the membrane potential at different instants
between the event times. To this aim, the differential
equation governing the dynamics between events is
used (in a integrated form), together with the values
already available at each event times, to find new in-
termediary values. Here, this is as simple as computing
the effect of the leak (exponential) and the refractory
period. As this only has to be done between events,
each neuron can be treated independently of the others.
In a sense, this illustrates how the hybrid formalism (as
presented in Section 2.1) is handled in Mvaspike: the
flow of discrete events is the main point of interest,
continuous dynamics come second.

4.8.4 Current status and further perspectives

Mvaspike is currently usable for the modeling of
medium to large scale networks of spiking neurons.
It is released under the GPL license, maintained and
supported by its main author and various contributors.

It has been used to model networks of IF neurons,
for e.g. modeling the early stages of the visual sys-
tem (see e.g. Hugues et al. 2002; Wohrer et al. 2006),
and more theoretical research on computing paradigms
offered by spiking neurons (for instance, Rochel and
Cohen 2007; Rochel and Vieville 2006). A partial par-
allel implementation was developed and successfully
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Table 1 Comparison of features of the different simulators

Question NEURON GENESIS NEST NCS CSIM XPP SPLIT Mvaspike

HH B.I. B.I. YES B.I. B.I. YES B.I. POSS
LIF B.I. POSS YES B.I. B.I. YES POSS** B.I.
Izhikevich IF YES B.I. YES NO B.I. YES POSS** POSS**
Cable eqs B.I. B.I. NO NO NO YES B.I. NO
ST plasticity YES B.I. YES B.I. B.I. YES B.I. YES
LT Plasticity YES YES YES B.I. B.I. YES NO** YES
Event-based B.I. NO YES NO NO YES NO YES
Exact B.I. − YES − − NO − YES
Clock-based B.I. B.I. YES B.I. YES YES YES POSS**
Interpolated B.I. NO YES NO NO YES B.I. POSS
G synapses B.I. B.I. YES B.I. B.I. YES B.I. POSS**
Parallel B.I. YES B.I. B.I. NO** NO B.I. NO**
Graphics B.I. B.I. NO(*) NO(*) NO(*) YES NO NO
Simple analysis B.I. B.I. YES NO(*) NO(*) YES NO NO
Complx analysis B.I. YES NO(*) NO(*) NO(*) YES NO NO
Development YES YES YES YES YES YES YES YES
How many p. 3 2−3 4 2−3 2 1 2 1
Support YES YES YES YES YES YES YES YES
Type e,p,c e e e e e e e
User forum YES YES YES NO NO YES YES NO
Publ list YES YES YES YES YES NO NO NO
Codes YES YES YES YES YES YES NO NO
Online manual YES YES YES YES YES YES YES YES
Book YES YES NO NO NO YES NO NO
XML import NO** POSS NO** NO** NO YES NO NO**
XML export B.I. NO** NO** NO** NO NO NO NO**
Web site YES YES YES YES YES YES YES YES
LINUX YES YES YES YES YES YES YES YES
Windows YES YES YES YES YES YES NO NO
Mac-Os YES YES YES NO NO YES NO NO
Interface B.I. B.I. POSS B.I YES POSS POSS POSS
Save option B.I. YES NO** B.I. NO NO NO NO

Different questions were asked (see below), and for each question, the answer is either: B.I. = Built-in feature, incorporated in the
simulator without need to load additional mechanisms; YES = feature very easy to simulate or implement (ie., a few minutes of
programming); POSS = feature possible to implement, but requires a bit of user programming; or NO = feature not implemented, would
require modifying the code. The list of questions were: HH: can it simulate HH models? LIF: can it simulate LIF models? Izhikevich IF:
can it simulate multivariable IF models, for example Izhikevich type? Cable eqs: can it simulate compartmental models with dendrites?
ST plasticity: can it simulate short-term synaptic plasticity? (facilitation, depression) LT Plasticity: can it simulate long-term synaptic
plasticity? (LTP, LTD, STDP) Event-based: can it simulate event-based strategies? exact: in this case, is the integration scheme exact?
Clock-based: can it simulate clock-based strategies? (e.g., Runge–Kutta) interpolated: in this case, does it use interpolation for spike
times? G synapses: can it simulate COBA synaptic interactions? parallel: does it support parallel processing? graphics: does it have a
graphical interface? simple analysis: is it possible to use the interface for simple analysis? (spike count, correlations, etc) complx analysis:
can more complex analysis be done? (parameter fitting, fft, matrix operations, ...) development: is it currently developed? how many
p.: if yes, how many developers are working on it? support: is it supported? (help for users) type: what type of support (email, phone,
consultation?) user forum: is there a forum of users or mailing list? publ list: is there a list of publications of articles that used it? codes:
are there codes available on the web of published models? online manual: are there tutorials and reference material available on the
web? book: are there published books on the simulator? XML import: can it import model specifications in XML? XML export: can it
export model specifications in XML? web site: is there a web site of the simulator where all can be found? (including help and source
codes) LINUX: does it run on LINUX? Windows: does it run on Windows? (98, 2K, XP) Mac-Os: does it run on Mac-OS X? Interface:
Is there a possibility to interface the simulator to outside signals? (such as a camera, or a real neuron) Save option: Does it have a
“save option,” (different than ctrl-z), allowing the user to interrupt a simulation, and continue it later on? (this feature is important on
a cluster when simulations must be interrupted) * Graphical interface and analysis possible via front-ends like Python or MATLAB
** Feature planned to be implemented in a future version of the simulator
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tested on small clusters of PCs and parallel machines
(16 processors max), and should be completed to take
into account all aspects of the framework and more
ambitious hardware platforms.

Work is ongoing to improve the interface of the
simulator regarding input and output data formatting,
through the use of structured data language (XML).
While a proof-of-concept XML extension has already
been developed, this is not a trivial task, and further
work is needed in the context of existing initiatives
(such as NeuroML).

Meanwhile, it is expected that the range of models
available to the user will be extended, for instance
through the inclusion of models of stochastic point
processes, and generic implementation of state space
discretization methods.

5 Discussion

We have presented here an overview of different
strategies and algorithms for simulating spiking neural
networks, as well as an overview of most of the
presently available simulation environment to imple-
ment such simulations. We also have conceived a set
of benchmark simulations of spiking neural networks
(Appendix B) and provide as supplementary material
(linked to ModelDB) the codes for implementing the
benchmarks in the different simulators. We believe this
should constitute a very useful resource, especially for
new researchers in the field of computational neuro-
science.

We voluntarily did not approach the difficult
problem of simulation speed and comparison of
different simulators in this respect. In Table 1 we have
tried to enumerate the features of every simulator, in
particular regarding the models that are implemented,
the possibility of distributed simulation and the
simulation environment. In summary, we can classify
the simulators presented in Section 4 into four cate-
gories according to their most relevant range of
application: (1) single-compartment models: CSIM,
NEST and NCS; (2) multi-compartment models:
NEURON, GENESIS, SPLIT; (3) event-driven sim-
ulation: MVASPIKE; (4) dynamical system analysis:
XPP. The simulators NEST, NCS, PCSIM (the new
parallel version of CSIM) and SPLIT are specifically
designed for distributed simulations of very large net-
works. Three simulators (NEURON, GENESIS and
XPP) constitute a complete simulation environment
which includes a graphical interface and sophisti-
cated tools for representation of model structure and
analysis of the results, as well as a complete book

for documentation. In other simulators, analysis and
graphical interface are obtained through the use of an
external front-end (such as MATLAB or Python).

It is interesting to note that the different simula-
tion environments are often able to simulate the same
models, but unfortunately the codes are not compat-
ible with each-other. This underlines the need for
a more transparent communication channel between
simulators. Related to this, the present efforts with
simulator-independent codes (such as NeuroML, see
Appendix A) constitutes the main advance for a fu-
ture inter-operability. We illustrated here that, using a
Python-based interface, one of the benchmarks can be
run in either NEURON or NEST using the same code
(see Fig. 24 and Appendix A).

Thus, future work should focus on obtaining a full
compatibility between simulation environments and
XML-based specifications. Importing and exporting
XML should enable to convert simulation codes be-
tween simulators, and thereby provide very efficient
means of combining existing models. A second direc-
tion for future investigations is to adapt simulation
environments to current hardware constraints, such as
parallel computations on clusters. Finally, more work
is also needed to clarify the differences between simu-
lation strategies and integration algorithms, which may
considerably differ for cases where the timing of spikes
is important (Fig. 4).

Acknowledgements Research supported by the European
Community (FACETS project, IST 15879), NIH (NS11613),
CNRS, ANR and HFSP. We are also grateful for the feedback
and suggestions from users that have led to improvements of the
simulators reviewed here.

Appendix A: Simulator-independent model
specification

As we have seen, there are many freely-available, open-
source and well-documented tools for simulation of
networks of spiking neurons. There is considerable
overlap in the classes of network that each is able to
simulate, but each strikes a different balance between
efficiency, flexibility, scalability and user-friendliness,
and the different simulators encompass a range of sim-
ulation strategies. This makes the choice of which tool
to use for a particular project a difficult one. Moreover,
we argue that using just one simulator is an undesirable
state of affairs. This follows from the general principle
that scientific results must be reproducible, and that any
given instrument may have flaws or introduce a system-
atic bias. The simulators described here are complex
software packages, and may have hidden bugs or
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unexamined assumptions that may only be apparent in
particular circumstances. Therefore it is desirable that
any given model should be simulated using at least two
different simulators and the results cross-checked.

This is, however, more easily said than done. The
configuration files, scripting languages or graphical in-
terfaces used for specifying model structure are very
different for the different simulators, and this, to-
gether with subtle differences in the implementation
of conceptually-identical ideas, makes the conversion
of a model from one simulation environment to an-
other an extremely non-trivial task; as such it is rarely
undertaken.

We believe that the field of computational neuro-
science has much to gain from the ability to easily
simulate a model with multiple simulators. First, it
would greatly reduce implementation-dependent bugs,
and possible subtle systematic biases due to use of
an inappropriate simulation strategy. Second, it would
facilitate communication between investigators and re-
duce the current segregation into simulator-specific
communities; this, coupled with a willingness to publish
actual simulation code in addition to a model descrip-
tion, would perhaps lead to reduced fragmentation of
research effort and an increased tendency to build on
existing models rather than redevelop them de novo.
Third, it would lead to a general improvement in
simulator technology since bugs could be more easily
identified, benchmarking greatly simplified, and hence
best-practice more rapidly propagated.

This goal of simulator independent model specifica-
tion is some way off, but some small steps have been
taken. There are two possible approaches (which will
probably prove to be complementary) to developing
simulator-independent model specification, which mir-
ror the two approaches taken to model specification by
individual simulators: declarative and programmatic.
Declarative model specification is exemplified by the
use of configuration files, as used for example by NCS.
Here there is a fixed library of neuron models, synapse
types, plasticity mechanisms, connectivity patterns, etc.,
and a particular model is specified by choosing from this
library. This has the advantages of simplicity in setting
up a model, and of well-defined behaviors for individual
components, but has less flexibility than the alternative,
programmatic model specification. Most simulators re-
viewed here use a more or less general purpose pro-
gramming language, usually an interpreted one, which
has neuroscience specific functions and classes together
with more general control and data structures. As
noted, this gives the flexibility to generate new struc-
tures beyond those found in the simulator’s standard
library, but at the expense of the very complexity that

we identified above as the major roadblock in convert-
ing models between simulators.

A.1 Declarative model specification using NeuroML

The NeuroML project26 is an open-source collabora-
tion27 whose stated aims are:

1. To support the use of declarative specifications for
models in neuroscience using XML

2. To foster the development of XML standards
for particular areas of computational neuroscience
modeling

The following standards have so far been developed:

• MorphML: specification of neuroanatomy (i.e. neu-
ronal morphology)

• ChannelML: specification of models of ion chan-
nels and receptors (see Fig. 21 for an example)

• Biophysics: specification of compartmental cell
models, building on MorphML and ChannelML

• NetworkML: specification of cell positions and con-
nections in a network.

The common syntax of these specifications is XML.28

This has the advantages of being both human- and
machine-readable, and standardized by an interna-
tional organization, which in turn has led to wide up-
take and developer participation.

Other XML-based specifications that have been de-
veloped in neuroscience and in biology more gener-
ally include BrainML29 for exchanging neuroscience
data, CellML30 for models of cellular and subcellular
processes and SBML31 for representing models of bio-
chemical reaction networks.

Although XML has become the most widely used
technology for the electronic communication of hier-
archically structured information, the real standardiza-
tion effort is orthogonal to the underlying technology,
and concerns the structuring of domain-specific knowl-
edge, i.e. a listing of the objects and concepts of interest
in the domain and of the relationships between them,
using a standardized terminology. To achieve this, Neu-
roML uses the XML Schema Language32 to define the

26http://www.neuroml.org (Crook et al. 2005)
27http://sourceforge.net/projects/neuroml
28http://www.w3.org/XML
29http://brainml.org
30http://www.cellml.org
31http://sbml.org
32http://www.w3.org/XML/Schema

http://www.neuroml.org
http://sourceforge.net/projects/neuroml
http://www.w3.org/XML
http://brainml.org
http://www.cellml.org
http://sbml.org
http://www.w3.org/XML/Schema
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Fig. 21 Example of
Hodgkin-Huxley K+
conductance specified in
ChannelML, a component
of NeuroML

allowed elements and structure of a NeuroML docu-
ment. The validity of a NeuroML document may be
checked with reference to the schema definitions. The
NeuroML Validation service33 provides a convenient
way to do this.

A.1.1 Using NeuroML for specifying network models

In order to use NeuroML to specify spiking neuronal
network models we require detailed descriptions of

1. Point spiking neurons (IF neurons and generaliza-
tions thereof)

2. Compartmental models with HH-like biophysics

33http://morphml.org:8080/NeuroMLValidator

3. Large networks with structured internal connec-
tivity related to a network topology (e.g., full-
connectivity, 1D or 2D map with local connectivity,
synfire chains patterns, with/without randomness)
and structured map to map connectivity (e.g.,
point-to-point, point-to-many, etc.)

At the time of writing, NeuroML supports the sec-
ond and third items, but not the first. However, an
extension to support specification of IF-type neuron
models is currently being developed, and will hopefully
be incorporated into the NeuroML standard in the near
future.

Specification of HH-type models uses the MorphML,
ChannelML and Biophysics standards of NeuroML
(see Fig. 21 for an example. We focus here only on spec-
ification of networks, using the NetworkML standard.

http://morphml.org:8080/NeuroMLValidator
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A key point is that a set of neurons and network con-
nectivity may be defined either by extension (providing
the list of all neurons, parameters and connections), for
example:

<population name="PopulationA">
<cell_type>CellA</cell_type>
<instances>
<instance id="0"><location x="0" y="0" z="0"/></instance>
<instance id="1"><location x="0" y="10" z="0"/></instance>
<instance id="2"><location x="0" y="20" z="0"/></instance>
. . .

</instances>
</population>

(note that CellA is a cell model described earlier in
the NeuroML document), or by specification, i.e. an
implicit enumeration, for example:

<population name="PopulationA">
<cell_type>CellA</cell_type>
<pop_location>
<random_arrangement>
<population_size>200</population_size>
<spherical_location>

<meta:center x="0" y="0" z="0" diameter="100"/>
</spherical_location>

</random_arrangement>
</pop_location>

</population>

Similarly, for connectivity, one may define an explicit
list of connections,

<projection name="NetworkConnection1">
<source>PopulationA</source>
<target>PopulationB</target>
<connections>
<connection id="0">
<pre cell_id="0" segment_id = "0"/>
<post cell_id="1" segment_id = "1"/>

</connection>
<connection id="1">
<pre cell_id="2" segment_id = "0"/>
<post cell_id="1" segment_id = "0"/>

</connection>
. . .

</connections>
</projection>
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or specify an algorithm to determine the connections:

<projection name="NetworkConnection1">
<source>PopulationA</source>
<target>PopulationB</target>
<connectivity_pattern>
<num_per_source>3</num_per_source>
<max_per_target>2</max_per_target>

</connectivity_pattern>
</projection>

A.1.2 Using NeuroML with a specific simulator

One very interesting feature of XML is that any lan-
guage such as NeuroML is not fixed for ever:

• It may be adapted to your own34 way of presenting
data and models (e.g. words may be written in
your own native language) as soon as the related
logical-structure can be translated to/from standard
NeuroML

• add-ons are always easily defined, as soon as
they are compatible with the original NeuroML
specifications.

Then using NeuroML simply means editing such
data-structures using a suitable XML editor, validating
them (i.e. verify that the related logical-structures are
well-formed and valid with respect to the specification,
conditions, etc.) and normalizing them (i.e. translate it
to an equivalent logical-structure but without redun-
dancy, while some factorization simplifies subsequent
manipulation).

Translation from this validated normalized form
is efficient and safe. Translation can be achieved by

34Pragmatic generic coding-rules. There are always several ways
to represent information as a logical-structure. Here are a few
key ideas to make such choices:

– Maximizing atomicity. i.e. structure the data with a max-
imal decomposition (e.g. atomic values must only contain
“words” else there is still a “structure” and is thus to be
decomposed itself in terms of elements).

– Maximizing factorization, i.e. prohibit data redundancy, but
use references to index a data fragment from another part
of the data. This saves place and time, but also avoid data
inconsistency.

– Maximizing flat representation, i.e. avoid complex tree struc-
tures, when the data can be represented as uniform lists of
data, i.e. tables with simple records, such as a field-set.

– Maximizing generic description, i.e. abstract representation,
without any reference to file format or operating-system
syntax: independent of how the data is going to be used.

– Maximizing parameterization of functionality, i.e. specify,
as much as possible, the properties (i.e. characteristics /
parameters / options) of a software module or a function as
a static set of data (instead of “putting-it-in-the-code”).

one of two methods: Either a simulator may accept
a NeuroML document as input, and translation from
NeuroML elements to native simulator objects is per-
formed by the simulator, or the XSL Transformation
language35 may be used to generate native simulator
code (e.g. hoc or NMODL in the case of NEURON).
For example, the NeuroML Validator service provides
translation of ChannelML and MorphML files to NEU-
RON and GENESIS formats.

The process of editing, validating, normalizing and
translating NeuroML data-structures is summarized in
Fig. 22.

A.1.3 Future extensions

The NetworkML standard is at an early stage of devel-
opment. Desirable future extensions include:

• Specification of point spiking models, such as the IF
model.

• More flexible specification of numerical parame-
ters. Numerical parameter values are not simple
“numbers” but satisfy certain standard conditions
(parameter values are physical quantities with a
unit, may take a default value, have values bounded
within a certain range with minimal/maximal values
and are defined up to a certain precision) or specific
conditions defined by a boolean expression, and
may have their default value not simply defined
by a constant but from an algebraic expression.
In the current NeuroML standards all numerical
parameters are simple numbers, and all units must
be consistent with either a “physiological units”
system or the SI system (they may not be mixed in
a single NeuroML document).

• Specifying parameter values as being drawn from a
defined random distribution.

A.2 Programmatic model specification using Python

For network simulations, we may well require more
flexibility than can easily be obtained using a declar-
ative model specification, but we still wish to obtain
simple conversion between simulators, i.e. to be able
to write the simulation code for a model only once,
then run the same code on multiple simulators. This
requires first the definition of an API (Application
Programming Interface) or meta-language, a set of
functions/classes which provides a superset of the capa-

35http://www.w3.org/TR/xslt

http://www.w3.org/TR/xslt
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Fig. 22 From NeuroML
to simulator
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bilities of the simulators we wish to run on.36 Having
defined an API, there are two possible next stages:
(1) each simulator implements a parser which can
interpret the meta-language; (2) a separate program
either translates the meta-language into simulator-
specific code or controls the simulator directly, giving
simulator-specific function calls.

In our opinion, the second of these possibilities is the
better one, since

1. it avoids replication of effort in writing parsers,
2. we can then use a general purpose, state-of-the-art

interpreted programming language, such as Python
or Ruby, rather than a simulator-specific language,
and thus leverage the effort of outside developers
in areas that are not neuroscience specific, such as
data analysis and visualization37

The PyNN project38 has begun to develop both the
API and the binding to individual simulation engines,
for both purposes using the Python programming lan-
guage. The API has two parts, a low-level, procedural
API (functions create(), connect(), set(), record()), and
a high-level, object-oriented API (classes Population
and Projection, which have methods like set(), record(),
setWeights(), etc.). The low-level API is good for small
networks, and perhaps gives more flexibility. The high-
level API is good for hiding the details and the book-
keeping, and is intended to have a one-to-one mapping
with NeuroML, i.e. a population element in NeuroML
will correspond to a Population object in PyNN.

The other thing that is required to write a model
once and run it on multiple simulators is standard cell

36Note that since we choose a superset, the system must emit a
warning/error if the underlying simulator engine does not support
a particular feature.
37For Python, examples include efficient data storage and trans-
fer (HDF5, ROOT), data analysis (SciPy), parallelization (MPI),
GUI toolkits (GTK, QT).
38pronounced “pine”; http://www.neuralensemble.org/

models. PyNN translates standard cell-model names
and parameter names into simulator-specific names,
e.g. standard model IF_curr_alpha is iaf_neuron
in NEST and StandardIF in NEURON, while
SpikeSource Poisson is a poisson_generator in NEST
and a NetStim in NEURON.

An example of the use of the API to specify a simple
network is given in Fig. 23.

Python bindings currently exist to control NEST
(PyNEST39) and Mvaspike, and Python can be used as
an alternative interpreter for NEURON (nrnpython),
although the level of integration (how easy it is to access
the native functionality) is variable. Currently PyNN
supports PyNEST and NEURON (via nrnpython), and
there are plans to add support for other simulators with
Python bindings, initially Mvaspike and CSIM, and to
add support for the distributed simulation capabilities
of NEURON and NEST.

A.2.1 Example simulations

Benchmarks 1 and 2 (see Appendix B) have been
coded in PyNN and run using both NEURON and
NEST (Fig. 24). The results for the two simulators are
not identical, since we used different random number
sequences when determining connectivity, but the dis-
tributions of inter-spike intervals (ISIs) and of the co-
efficient of variation of ISI are almost indistinguishable.
All the cell and synapse types used in the benchmarks
are standard models in PyNN. Where these models
do not come as standard in NEURON or NEST, the
model code is distributed with PyNN (in the case of
NEURON) or with PyNEST (in the case of NEST). We
do not report simulation times, as PyNN has not been
optimized for either simulator.

39a Python interface to NEST

http://www.neuralensemble.org/
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Fig. 23 Example of the use of
the PyNN API to specify a
network that can then be run
on multiple simulators

Appendix B: Benchmark simulations

In this appendix, we present a series of “benchmark”
network simulations using both IF or HH type neurons.
They were chosen such that at least one of the bench-
mark can be implemented in the different simulators
(the code corresponding to these implementations will
be provided in the ModelDB database).40

The models chosen were networks of excitatory
and inhibitory neurons inspired from a recent study
(Vogels and Abbott 2005). This paper considered two
types of networks of LIF neurons, one with CUBA
synaptic interactions (CUBA model), and another one
with COBA synaptic interactions (CUBA model; see
below). We also introduce here a HH-based version of
the COBA model, as well as a fourth model consisting
of IF neurons interacting through voltage deflections
(“voltage-jump” synapses).

B.1 Network structure

Each model consisted of 4,000 IF neurons, which were
separated into two populations of excitatory and in-
hibitory neurons, forming 80% and 20% of the neurons,
respectively. All neurons were connected randomly us-
ing a connection probability of 2%.

B.2 Passive properties

The membrane equation of all models was given by:

Cm
dV
dt

= −gL(V − EL) + S(t) + G(t) , (5)

40http://senselab.med.yale.edu/senselab/ModelDB

where Cm = 1 μF/cm2 is the specific capacitance, V
is the membrane potential, gL = 5×10−5 S/cm2 is the
leak conductance density and EL = −60 mV is the
leak reversal potential. Together with a cell area of
20,000 μm2, these parameters give a resting membrane
time constant of 20 ms and an input resistance at rest
of 100 M�. The function S(t) represents the spiking
mechanism and G(t) stands for synaptic interactions
(see below).

B.3 Spiking mechanisms

B.3.1 IF neurons

In addition to passive membrane properties, IF neurons
had a firing threshold of −50 mV. Once the Vm reaches
threshold, a spike is emitted and the membrane poten-
tial is reset to −60 mV and remains at that value for a
refractory period of 5 ms.

B.3.2 HH neurons

HH neurons were modified from Traub and Miles
(1991) and were described by the following equations:

Cm
dV
dt

= −gL(V − EL) − ḡNa m3h (V − ENa)

−ḡKd n4 (V − EK) + G(t)

dm
dt

= αm(V) (1 − m) − βm(V) m

dh
dt

= αh(V) (1 − h) − βh(V) h

dn
dt

= αn(V) (1 − n) − βn(V) n, (6)

http://senselab.med.yale.edu/senselab/ModelDB
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Fig. 24 Same network model run on two different simulators
using the same source code. The model considered was the
Vogels-Abbott integrate-and-fire network with CUBA synapses
and displaying self-sustained irregular activity states (Benchmark
2 in Appendix B). This network implemented with the PyNN
simulator-independent network modelling API, and simulated
using NEST (left column) and NEURON (right column) as
the simulation engines. The same sequence of random numbers
was used for each simulator, so the connectivity patterns were
rigorously identical. The membrane potential trajectories of indi-

vidual neurons simulated in different simulators rapidly diverge,
as small numerical differences are rapidly amplified by the large
degree of recurrency of the circuit, but the interspike interval
(ISI) statistics of the populations are almost identical for the
two simulators. (Top row) Voltage traces for two cells chosen at
random from the population. (Second row) Spike raster plots for
the first 320 neurons in the population. (Third row) Histograms
of ISIs for the excitatory and inhibitory cell populations. (Bottom
row) Histograms of the coefficient of variation (CV) of the ISIs
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where ḡNa = 100 mS/cm2 and ḡKd = 30 mS/cm2 are
the maximal conductances of the sodium current and
delayed rectifier with reversal potentials of ENa =
50 mV and EK = −90 mV. m, h, and n are the acti-
vation variables which time evolution depends on the
voltage-dependent rate constants αm, βm, αh, βh, αn

and βn. The voltage-dependent expressions of the rate
constants were modified from the model described by
Traub and Miles (1991):

αm = 0.32 ∗ (13−V+VT)/[exp((13−V+VT)/4)−1]
βm = 0.28 ∗ (V−VT −40)/[exp((V − VT −40)/5)−1]
αh = 0.128 ∗ exp((17−V+ vVT)/18)

βh = 4/[1+exp((40−V+VT)/5)]
αn = 0.032 ∗ (15−V+VT)/[exp((15−V+VT)/5)−1]
βn = 0.5 ∗ exp((10−V+VT)/40) ,

where VT = −63 mV adjusts the threshold (which was
around −50 mV for the above parameters).

B.4 Synaptic interactions

B.4.1 COBA synapses

For COBA synaptic interactions, the membrane equa-
tion of neuron i was given by:

Cm
dVi

dt
= −gL(Vi − EL) + S(t) −

∑

j

g ji(t)(Vi − E j),

(7)

where Vi is the membrane potential of neuron i, g ji(t)
is the synaptic conductance of the synapse from neuron
j to neuron i, and E j is the reversal potential of that
synapse. E j was of 0 mV for excitatory synapses, or
−80 mV for inhibitory synapses.

Synaptic interactions were implemented as follows:
when a spike occurred in neuron j, the synaptic conduc-
tance g ji was instantaneously incremented by a quan-
tum value (6 nS and 67 nS for excitatory and inhibitory
synapses, respectively) and decayed exponentially with
a time constant of 5 ms and 10 ms for excitation and
inhibition, respectively.

B.4.2 CUBA synapses

For implementing CUBA synaptic interactions, the fol-
lowing equation was used:

Cm
dVi

dt
= −gL(Vi − EL) + S(t) −

∑

j

g ji(t)(V̄ − E j) ,

(8)

where V̄ = −60 mV is the mean membrane potential.
The conductance quanta were of 0.27 nS and 4.5 nS
for excitatory and inhibitory synapses, respectively.
The other parameters are the same as for COBA
interactions.

B.4.3 Voltage-jump synapses

For implementing voltage-jump type of synaptic inter-
actions, the membrane potential was abruptly increased
by a value of 0.25 mV for each excitatory event, and it
was decreased by 2.25 mV for each inhibitory event.

B.5 Benchmarks

Based on the above models, the following four bench-
marks were implemented.

Benchmark 1: COBA IF network. This benchmark
consists of a network of IF neurons
connected with COBA synapses, ac-
cording to the parameters above. It is
equivalent to the COBA model de-
scribed in Vogels and Abbott (2005).

Benchmark 2: CUBA IF network. This second bench-
mark simulates a network of IF neu-
rons connected with CUBA synapses,
which is equivalent to the CUBA
model described in Vogels and Abbott
(2005). It has the same parameters as
above, except that every cell needs to
be depolarized by about 10 mV, which
was implemented by setting EL =
−49 mV (see Vogels and Abbott 2005).

Benchmark 3: COBA HH network. This benchmark
is equivalent to Benchmark 1, except
that the HH model was used.

Benchmark 4: IF network with voltage-jump synapses.
This fourth benchmark used voltage-
jump synapses, and has a membrane
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equation which is analytically solvable,
and can be implemented using event-
driven simulation strategies.

For all four benchmarks, the models simulate a self-
sustained irregular state of activity, which is easy to
identify: all cells fire irregularly and are characterized
by important subthreshold voltage fluctuations. The
neurons must be randomly stimulated during the first
50 ms in order to set the network in the active state.

B.6 Supplementary material

The supplementary material to the paper contains the
codes for implementing those benchmarks in the differ-
ent simulators reviewed here (see Section 4 for details
on specific implementations). We provide the codes
for those benchmarks, implemented in each simula-
tor, and this code is made available in the ModelDB
database.41

In addition, we provide a clock-driven implemen-
tation of Benchmarks 1 and 2 with Scilab, a free
vector-based scientific software. In this case, Bench-
mark 1 is integrated with Euler method, second order
Runge–Kutta and Euler with spike timing interpolation
(Hansel et al. 1998), while Benchmark 2 is integrated
exactly (with spike timings aligned to the time grid).
The event-driven implementation (Benchmark 4) is
also possible with Scilab but very inefficient because
the programming language is interpreted, and since the
algorithms are asynchronous, the operations cannot be
vectorized. Finally, we also provide a C++ implementa-
tion of Benchmark 2 and of a modified version of the
COBA model (Benchmark 1, with identical synaptic
time constants for excitation and inhibition).
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